

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant

agreement No 101004590

Deliverable

D5.3 URBANAGE Ecosystem Prototype. Initial

Project Acronym: URBANAGE

Project title: Enhanced URBAN planning for AGE-friendly cities

through disruptive technologies

Grant Agreement No. 101004590

Website: www.urbanage.eu

Version: 1.0

Date: 04/05/2022

Responsible Partner: ATC

Contributing Partners: ENG

Reviewers: Gorka Benguria (TEC),

Celia Gilsanz (SANT)

Dissemination Level: Public x

Confidential – only consortium members and European

Commission

Ref. Ares(2022)3475585 - 05/05/2022

© URBANAGE GA no: 101004590 2

D5.3 URBANAGE Ecosystem Prototype. Initial

Revision History

Revision Date Author Organization Description

0.1 18/03/2022 Athanasios Dalianis ATC ToC

0.2 23/03/2022 Athanasios Dalianis, Guiseppe
Ciulla

ATC, ENG Initial content for
sections 3.1 and

3.2 and initial
comments

0.3 04/04/2022 Athanasios Dalianis ATC Initial content for
section 3.3

0.4 06/04/2022 Athanasios Dalianis ATC Initial content for
section 3.4

0.5 13/04/2022 George Giotis, Ioannis Dematis ATC Updates in section
3.3

0.6 18/04/2022 George Giotis, Ioannis Dematis ATC Updates in section
3.4

0.7 19/04/2022 Athanasios Dalianis ATC Updates in section
3

0.8 20/04/2022 Maritini Kalogerini ATC Version ready for
internal review

0.9 25/04/2022
26/04/2022

Gorka Benguria
Celia Gilsanz

TEC
SANT

Comments from
reviewers

1.0 04/05/2022 Athanasios Dalianis

ATC Final version

© URBANAGE GA no: 101004590 3

D5.3 URBANAGE Ecosystem Prototype. Initial

Table of Contents
1 Executive Summary 6

2 Introduction 7

3 The URBANAGE Ecosystem 8

3.1 Reference to defined architecture and implementation plan 8

3.2 Deployment 9

3.3 Supporting tools deployed 10

3.3.1 API Gateway 10

3.3.2 Identity Manager 11

3.3.3 Message Broker 12

3.3.4 Monitoring 13

3.3.5 Code Quality 15

3.4 Overview of the components installed 16

3.4.1 Big Data storage 17

3.4.2 Digital Twin System 18

3.4.3 Big Data Analytics System 18

3.4.3.1 Descriptive Predictive and Prescriptive Analysis 19

3.4.3.2 Optimisation - Age friendly route planner 20

3.4.4 Data Management 20

3.4.4.1 Context Broker 20

3.4.4.2 Data Gateway 21

3.4.4.3 Data Repositories Federator 21

3.4.5 Platform UIs 22

4 Conclusion 25

5 References 26

© URBANAGE GA no: 101004590 4

D5.3 URBANAGE Ecosystem Prototype. Initial

Table of Figures
Figure 1: URBANAGE Architecture 8

Figure 2: URBANAGE Ecosystem deployment diagram 9

Figure 3: Traefik dashboard 11

Figure 4: Keycloak dashboard 12

Figure 5: Kafdrop dashboard 13

Figure 6: Grafana dashboard 15

Figure 7: SonarQube dashboard 16

Figure 8: Min.io console 18

Figure 9: Spark console 19

Figure 10: Age friendly route planner UI 20

Figure 11: Data Repositories Federator UI 22

Figure 12: Platform UIs - Login page 23

Figure 13: Platform UIs - User registration page 24

Table of Tables
Table 1: Deployment tools 9

Table 2: Main URBANAGE supporting tools 10

Table 3: API Gateway 10

Table 4: Identity Manager 11

Table 5: Message Broker 13

Table 6: Monitoring tools 14

Table 7: SonarQube 15

Table 8: Big Data Storage 17

Table 9: Digital Twin System 18

Table 10: DPPA 19

Table 11: Age friendly route planner 20

Table 12: Context Broker 21

Table 13: Data Gateway 21

Table 14: Data Repositories Federator 21

Table 15: Platform UIs 22

© URBANAGE GA no: 101004590 5

D5.3 URBANAGE Ecosystem Prototype. Initial

List of abbreviations

Abbreviation Explanation

API Application Programming Interface

CI/CD Continuous Integration / Continuous Deployment

CIM City Information Model

CSV Comma Separated Values

DML Data Management Layer

DPPA Descriptive Predictive Prescriptive Analytics

HTTP(S) Hypertext Transfer Protocol (Secure)

IT Information Technology

IoT Internet of Things

JSON JavaScript Object Notation

ML / DL Machine Learning / Deep Learning

MQTT Message Queuing Telemetry Transport

REST Representational State Transfer

SQL Structured Query Language

WP Work Package

UI User Interface

© URBANAGE GA no: 101004590 6

D5.3 URBANAGE Ecosystem Prototype. Initial

1 Executive Summary

This document summarizes the actions performed under Task 5.3. “URBANAGE Ecosystem (Continuous

Platform Integration and User Interface)” up to now, as well as the activities to be performed during the

Task’s lifetime.

The URBANAGE architecture is comprised by various components and tools that follow the microservices

approach. It is based on the user requirements and specifications coming from WP2 and WP6, and the

output of the modules materialised in WP3 and WP4. Once these components have been developed, the

integration phase begins and allows for the completion of a working integrated system.

Deliverable 5.3 “URBANAGE Ecosystem Prototype. Initial” describes the architecture and the initial

implementation plan of URBANAGE ecosystem, as well as the main platforms and tools used for the

deployment of the URBANAGE components. Moreover, a brief overview of the URBANAGE components

installed on the development server based on M15 integration plan, is being provided. More specifically, in

this document the components that are being described are: The Big Data storage, the Digital Twin System,

the Big Data Analytics System and The Data Management system. Finally, a description of the

implementation and deployment of an initial version of the User and Admin UIs of the Platform is being

provided.

© URBANAGE GA no: 101004590 7

D5.3 URBANAGE Ecosystem Prototype. Initial

2 Introduction

Urban planning is a complicated process that comprises utility structures, distribution chains,

communication networks, infrastructure, and several other features and procedures. Urban planners are

adopting urban planning software and services to handle such intricate processes and conceptualize urban

designs and plan layouts. Via URBANAGE activities, the consortium implements a framework for decision

making in the field of urban planning. Special attention will be paid to the building of a decision-support

Ecosystem that will be the basis of the framework and that will integrate Big Data Analysis, modelling and

simulation techniques with Artificial Intelligence (AI) algorithms, adapted visualization methods through

Urban Digital Twins and gamification for enhanced engagement purposes. More specifically, URBANAGE will

develop an Ecosystem that improves the quality of decision making on issues related to urban planning for

age-friendly cities, by harnessing the collective intelligence of users. The Ecosystem will integrate a dynamic

iterative approach and correlations among multiple variables from multiple and varied data sources, in order

to better tackle the complexity and interrelated nature of urban systems. URBANAGE project will deal with

the social and political components of urban systems, the potential benefits, risks, and impact of

implementing a long-term sustainable framework for data-driven decision-making with aim to lead to more

sustainable decisions and cross-sectoral strategic actions.

On the one hand, the technical components to build an intelligence data management framework that can

support advanced data analysis and simulation capabilities, are being developed under WP3. These

components include a) Data management components that will be in charge of collecting, aggregating and

harmonising different types of data, coming from various sources in the cities, b) Artificial Intelligence

algorithms and simulation engines that will be able to analyse the collected data and provide predictions

support decision-making processes, and c) Big Data analytics components able to analyse a large set of data

to extract knowledge providing visual dashboards for the end users.

In parallel, on the other hand, the URBANAGE Digital Twin that is being developed under WP4 is an

extensible platform that can be supported through solution accelerators. This platform will integrate the

solution accelerators and will allow the interaction with them through a user interface.

Following the development of these components, the integration phase will begin and allow for the

accomplishment of a functional integrated system and more specifically, the building of a reliable and

manageable core system that is replicable and extendable. WP5 will provide the core integration activities of

the project. The user requirements and specifications have been designed and gathered under WP2 & WP6

activities, while the output of the modules is being implemented under WP3 & WP4.

© URBANAGE GA no: 101004590 8

D5.3 URBANAGE Ecosystem Prototype. Initial

3 The URBANAGE Ecosystem

In this section we provide a quick reminder of the URBANAGE architecture, as well as details about the

status of the deployment and installation of the components and supporting tools that comprise the

URBANAGE ecosystem.

3.1 Reference to defined architecture and implementation plan

As described in deliverable 5.1 (D5.1) [1], the URBANAGE architecture is comprised by various components

and tools that follow the microservices approach and interact harmonically in order to realise the business

logic of the project and tackle the pilot user needs.

Figure 1: URBANAGE Architecture

The URBANAGE components are being implemented and integrated in releases following the agile principles.

The current release of the URBANAGE ecosystem is part of the M15 milestone and according to the

implementation plan described in D5.1, involves components of the Data Management layer, the Big Data

Analytics tools, and the Digital Twin System. In the following sections we provide more details about the

specific components and tools deployed and integrated for this release.

© URBANAGE GA no: 101004590 9

D5.3 URBANAGE Ecosystem Prototype. Initial

3.2 Deployment

The following table presents in a nutshell the main platforms and tools used for the deployment of the

URBANAGE components. More specifically we provide the category of interest, the relevant tool as well as

the deployed version of the tool. These technologies have been described in more detail in D5.2 [2], so in the

current document we just give a reminder and update the information regarding the server specs and the

tool versions.

Regarding the development server, for the purposes of the project, we have selected the dedicated server

AX101 [3] provided by Hetzner [4] with 16 cores / 32 threads, 128GB RAM DDR4 and 2 x 3.84 TB NVMe SSD.

Table 1: Deployment tools

Category Tool Version

Code repository Gitlab Gitlab cloud, free plan

Component images repository Gitlab registry Gitlab cloud, free plan

Component deployment Gitlab pipelines Gitlab cloud, free plan

Cloud services provision Hetzner dedicated server AX101

Component packaging Docker 20.10.14

Component orchestration Docker compose 2.4.1

In Figure 2 we present the deployment diagram of the URBANAGE ecosystem for the current release.

Figure 2: URBANAGE Ecosystem deployment diagram

© URBANAGE GA no: 101004590 10

D5.3 URBANAGE Ecosystem Prototype. Initial

3.3 Supporting tools deployed

In this section we provide a quick overview of the supporting tools that are deployed in the URBANAGE

server and will aid the URBANAGE ecosystem in areas like communication, user authentication, monitoring

etc.

The following table presents in a nutshell the category of interest, the relevant tool as well as the deployed

version of the tool. For every tool we give a quick description of its purpose and some details about its

deployment, like the Docker image used, its dependencies, the relevant GitLab repository, its public

endpoints (if any) and screenshots for its UI (if any).

Table 2: Main URBANAGE supporting tools

Category Tool Version

API Gateway Traefik v2.6

Identity Manager Keycloak 17.0.1-legacy

Message Bus Kafka 2.8.1

Monitoring Prometheus, Grafana 2.34 , 7.4.5 respectively

Code Quality SonarQube 7.7 community

3.3.1 API Gateway

In microservices architectures, where many services are deployed in a number of virtual or physical nodes
and multiple instances of the same service can exist, an API Gateway is a necessity.

An API Gateway is a component that intervenes between a web client and the backend APIs, acting as a
reverse proxy that forwards the request to the appropriate microservice, usually after proper authorization.

The API Gateway thus provides a single point of access to UIs and in general external applications, decreases
the complexity of implementation and allows security measures, and functionalities such as load balancing
and service discovery to be applied more easily. For the purposes of the project, we are going to use Traefik
[5].

Traefik is a reverse proxy and load balancer that aids in the deployment of microservices. It is capable of

handling large, highly complex deployments across a wide range of protocols, and it comes with a powerful

set of middleware that enhance its capabilities to include features like certificate management, https

entrypoint, load balancing and API gateway.

Table 3: API Gateway

Docker image Dependencies GitLab repository Endpoints

traefik:v2.6 - https://gitlab.com/urban
ageeu/api-gateway.git

https://ecosystem.urban
age.eu/dashboard/

https://gitlab.com/urbanageeu/api-gateway.git
https://gitlab.com/urbanageeu/api-gateway.git
https://ecosystem.urbanage.eu/dashboard/
https://ecosystem.urbanage.eu/dashboard/

© URBANAGE GA no: 101004590 11

D5.3 URBANAGE Ecosystem Prototype. Initial

Figure 3: Traefik dashboard

3.3.2 Identity Manager

The Identity Manager is responsible to store securely the user account data and to provide authentication

and authorization services to the platform. The realization of the Identity Manager will be based on

Keycloak.

Keycloak [6] is an open-source identity and access manager for application and services, that provides

several features for the project like centralized management, standard protocols like OAuth 2.0, SAML 2.0

etc, social login, single sign on (SSO) etc, giving us a variety of options to tackle the project needs in this area.

Table 4: Identity Manager

Docker image Dependencies GitLab repository Endpoints

quay.io/keycloak/keycloak:17.0.
1-legacy

PostgreSQL https://gitlab.com/urb
anageeu/urbanage-

tools.git

https://ecosystem.urb
anage.eu/auth/

https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://ecosystem.urbanage.eu/auth/
https://ecosystem.urbanage.eu/auth/

© URBANAGE GA no: 101004590 12

D5.3 URBANAGE Ecosystem Prototype. Initial

Figure 4: Keycloak dashboard

3.3.3 Message Broker

The Message Broker allows the different URBANAGE components to communicate and exchange data in an

asynchronous way.

Apache Kafka [7] is an open-source Massage Broker, with characteristics like stream processing, highly

scalable architecture, high availability and throughput, as well as a large ecosystem of open-source tools and

plugins around it e.g., MQTT support. All these characteristics make Apache Kafka a perfect option for the

URBANAGE project.

Apache Kafka is used in a master - worker mode, thus it is possible to create a cluster of Kafka Brokers, each

one being able to support thousands of message queues that are called event topics. Every component that

needs to exchange data through Kafka, is required to send its data to specific topics in a certain format and

listen to specific topics to retrieve them.

ZooKeeper [8] is a centralized service for maintaining configuration information, naming, providing

distributed synchronization, and providing group services. ZooKeeper is used in distributed systems for

service synchronization and as a naming registry. When working with Apache Kafka, ZooKeeper is primarily

used to track the status of nodes in the Kafka cluster and maintain a list of Kafka topics and messages.

On top of Kafka, we have deployed kafdrop [9] which is a web UI for viewing various aspects of Kafka like

consumer groups, topics, consumers and messages.

© URBANAGE GA no: 101004590 13

D5.3 URBANAGE Ecosystem Prototype. Initial

Table 5: Message Broker

Docker image Dependencies GitLab repository Endpoints

wurstmeister/kafka:2.13-
2.8.1

Zookeeper https://gitlab.com/urbana
geeu/urbanage-tools.git

-

wurstmeister/zookeeper:l
atest

- https://gitlab.com/urbana
geeu/urbanage-tools.git

-

obsidiandynamics/kafdro
p:3.29.0

Kafka https://gitlab.com/urbana
geeu/urbanage-tools.git

https://ecosystem.urban
age.eu/kafdrop/

Figure 5: Kafdrop dashboard

3.3.4 Monitoring

For the purposes of the project regarding software monitoring, we have deployed Prometheus [10] and

Grafana [11].

Prometheus is an open-source tool under Apache License, used for event monitoring and alerting. It records

real time metrics and stores them in a time series database. It features functionalities like distributed

storage, multiple nodes of graphing and dashboards support and can collaborate with a wide range of tools

https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://ecosystem.urbanage.eu/kafdrop/
https://ecosystem.urbanage.eu/kafdrop/

© URBANAGE GA no: 101004590 14

D5.3 URBANAGE Ecosystem Prototype. Initial

like Docker, Kubernetes and Grafana. In order for Prometheus to retrieve more information form the host

machine, it uses node exporter.

Grafana is open-source and extendable analytics and interactive visualization web application, that allows a

user to query and visualize data, through a set of charts, graphs and alerts, no matter where this data is

stored.

Table 6: Monitoring tools

Docker image Dependencies GitLab repository Endpoints

prom/prometheus:v2.34.
0

- https://gitlab.com/urban
ageeu/urbanage-

tools.git

-

grafana/grafana:7.4.5-
ubuntu

Prometheus https://gitlab.com/urban
ageeu/urbanage-

tools.git

https://ecosystem.urban
age.eu/grafana/

prom/node-
exporter:v1.3.1

Prometheus https://gitlab.com/urban
ageeu/urbanage-

tools.git

-

https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://ecosystem.urbanage.eu/grafana/
https://ecosystem.urbanage.eu/grafana/
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git

© URBANAGE GA no: 101004590 15

D5.3 URBANAGE Ecosystem Prototype. Initial

Figure 6: Grafana dashboard

3.3.5 Code Quality

In order to have a more reliable and globally accepted measure of code quality, for the various quality

metrics defined in the validation methodology, the popular SonarQube, a quality gateway, has been

installed.

SonarQube [12] is an open-source platform developed for continuous inspection of code quality to perform

automatic reviews with static analysis of code to detect bugs, code smells, and security vulnerabilities on

more than 20 programming languages. SonarQube offers reports on duplicated code, coding standards, unit

tests, code coverage, code complexity, comments, bugs, and security vulnerabilities.

Table 7: SonarQube

Docker image Dependencies GitLab repository Endpoints

sonarqube:7.7-
community

PostreSQL https://gitlab.com/urban
ageeu/urbanage-

tools.git

https://ecosystem.urban
age.eu/sonarqube/

https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://ecosystem.urbanage.eu/sonarqube/
https://ecosystem.urbanage.eu/sonarqube/

© URBANAGE GA no: 101004590 16

D5.3 URBANAGE Ecosystem Prototype. Initial

Figure 7: SonarQube dashboard

3.4 Overview of the components installed

In this section, we provide a brief overview of the first versions of the URBANAGE components installed on

our development server based on M15 integration plan. For every component / system we provide a quick

overview of its role in the URBANAGE ecosystem, as well as deployment information, like the docker image

used, the component’s dependencies, the related GitLab repository, its public endpoints (if any) and

screenshots from its UI (if any). In summary these components are part of:

 The Big Data Storage

 The Digital Twin System

 The Big Data Analytics System

 The Data Management System

 The Platform UIs

© URBANAGE GA no: 101004590 17

D5.3 URBANAGE Ecosystem Prototype. Initial

3.4.1 Big Data storage

It provides a storage facility for the data collected and enables further analysis by the Big Data Analytics and

AI components. It retains data related to both real time and offline processes. The Big Data storage facility is

comprised mainly of the Min.io tool [13], and also the databases that URBANAGE components depend on,

more specifically MySQL [14], PostgreSQL [15], MongoDB [16] and RDF4J [17]. More details can be found at

D5.1.

To support the need for high available Big Data storage the Min.io service is set up in distributed mode.

Specifically, it comprises of 4 server instances that are reverse proxied through Nginx load balancing.

Table 8: Big Data Storage

Docker image Dependencies GitLab repository Endpoints

quay.io/minio/minio:RELEASE.202
2-04-01T03-41-39Z

Nginx https://gitlab.com/ur
banageeu/data-

storage

http://ecosystem.urb
anage.eu:9001/login

mysql:5.7 - https://gitlab.com/ur
banageeu/urbanage-

tools.git

-

postgres:13.0-alpine - https://gitlab.com/ur
banageeu/urbanage-

tools.git

-

mongo:latest - https://gitlab.com/ur
banageeu/urbanage-

tools.git

-

yyz1989/rdf4j https://gitlab.com/ur
banageeu/urbanage-

tools.git

-

nginx:1.19.2-alpine - https://gitlab.com/ur
banageeu/urbanage-

tools.git

-

https://gitlab.com/urbanageeu/data-storage
https://gitlab.com/urbanageeu/data-storage
https://gitlab.com/urbanageeu/data-storage
http://ecosystem.urbanage.eu:9001/login
http://ecosystem.urbanage.eu:9001/login
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git
https://gitlab.com/urbanageeu/urbanage-tools.git

© URBANAGE GA no: 101004590 18

D5.3 URBANAGE Ecosystem Prototype. Initial

Figure 8: Min.io console

3.4.2 Digital Twin System

The Digital Twin System is a web application that gathers and processes city geographical data which

presents to the user in an intuitive manner. The application comprises of various components, like a CIM

database that holds the processed data, connectors to perform the necessary processing etc. More details

about the Digital Twin system can be found at D5.1.

Table 9: Digital Twin System

Docker image Dependencies GitLab repository Endpoints

tumgis/3dcitydb-web-
map:alpine-v1.9.0

cim-db, cim-wfsm, cim-
pgadmin

https://gitlab.com/urban
ageeu/city-information-

model.git

http://ecosystem.urbana
ge.eu:18086/

3dcitydb/3dcitydb-pg:9.6-
3.1-4.2.0-alpine

- https://gitlab.com/urban
ageeu/city-information-

model.git

-

3dcitydb/wfs:5.0.0-alpine cim-db https://gitlab.com/urban
ageeu/city-information-

model.git

https://ecosystem.urban
age.eu/wfsclient/

dpage/pgadmin4:6.8 cim-db https://gitlab.com/urban
ageeu/city-information-

model.git

-

3.4.3 Big Data Analytics System

The Big Data Analytics System is responsible for analysing the data gathered by the Data Management

System and provide useful information and functionalities to the user. Currently, initial versions of the

Optimisation and DPPA components have been integrated on the project’s development server. More

details about the Big Data Analytics system and its components can be found at D5.1

https://gitlab.com/urbanageeu/city-information-model.git
https://gitlab.com/urbanageeu/city-information-model.git
https://gitlab.com/urbanageeu/city-information-model.git
http://ecosystem.urbanage.eu:18086/
http://ecosystem.urbanage.eu:18086/
https://gitlab.com/urbanageeu/city-information-model.git
https://gitlab.com/urbanageeu/city-information-model.git
https://gitlab.com/urbanageeu/city-information-model.git
https://gitlab.com/urbanageeu/city-information-model.git
https://gitlab.com/urbanageeu/city-information-model.git
https://gitlab.com/urbanageeu/city-information-model.git
https://ecosystem.urbanage.eu/wfsclient/
https://ecosystem.urbanage.eu/wfsclient/
https://gitlab.com/urbanageeu/city-information-model.git
https://gitlab.com/urbanageeu/city-information-model.git
https://gitlab.com/urbanageeu/city-information-model.git

© URBANAGE GA no: 101004590 19

D5.3 URBANAGE Ecosystem Prototype. Initial

3.4.3.1 Descriptive Predictive and Prescriptive Analysis

The main objective of this module is to draw valuable knowledge from all the data gathered in URBANAGE.

This valuable knowledge can be divided into three different categories:

 descriptive, which can take raw data and obtain significant conclusions to be analysed.

 prescriptive, which can also be considered as optimization, which obtains the needed information

and offers to the user different solutions for helping in the decision-making process.

 and predictive, which uses algorithms that fall within the ML and DL category, and which obtain data

as input for predicting future stages of certain domains.

The DPPA component relies on the Apache Spark Big Data framework [18] as the processing backbone. A

Spark cluster consisting of 2 worker nodes is set up to address the need for a reliable and highly available

processing pipeline.

Table 10: DPPA

Docker image Dependencies GitLab repository Endpoints

dpp-analysis:latest Apache Spark cluster https://gitlab.com/urban
ageeu/dpp-analysis.git

-

cluster-apache-spark:3.2.1 Spark master https://gitlab.com/urban
ageeu/dpp-analysis.git

http://ecosystem.urbana
ge.eu:9070/

cluster-apache-spark:3.2.1 Spark worker 1 https://gitlab.com/urban
ageeu/dpp-analysis.git

http://ecosystem.urbana
ge.eu:9071/

cluster-apache-spark:3.2.1 Spark worker 2 https://gitlab.com/urban
ageeu/dpp-analysis.git

http://ecosystem.urbana
ge.eu:9072/

Figure 9: Spark console

https://gitlab.com/urbanageeu/dpp-analysis.git
https://gitlab.com/urbanageeu/dpp-analysis.git
https://gitlab.com/urbanageeu/dpp-analysis.git
https://gitlab.com/urbanageeu/dpp-analysis.git
http://ecosystem.urbanage.eu:9070/
http://ecosystem.urbanage.eu:9070/
https://gitlab.com/urbanageeu/dpp-analysis.git
https://gitlab.com/urbanageeu/dpp-analysis.git
http://ecosystem.urbanage.eu:9071/
http://ecosystem.urbanage.eu:9071/
https://gitlab.com/urbanageeu/dpp-analysis.git
https://gitlab.com/urbanageeu/dpp-analysis.git
http://ecosystem.urbanage.eu:9072/
http://ecosystem.urbanage.eu:9072/

© URBANAGE GA no: 101004590 20

D5.3 URBANAGE Ecosystem Prototype. Initial

3.4.3.2 Optimisation - Age friendly route planner

This module is composed by the algorithms in charge of solving optimization problems of URBANAGE. More

concretely, all the algorithms and functionalities regarding the route planning system are comprised within

this category.

Table 11: Age friendly route planner

Docker image Dependencies GitLab repository Endpoints

registry.gitlab.com/urban
ageeu/age-friendly-route-

planner:latest

- https://gitlab.com/urb
anageeu/age-friendly-

route-planner.git

http://ecosystem.urbanag
e.eu:8099/

Figure 10: Age friendly route planner UI

3.4.4 Data Management

The Data Management system allows the initial transformation of the data, its modelling and integration

into a database more typical of a Big Data system. This system offers the functionalities to access, collect,

aggregate, and harmonise data coming from heterogeneous sources, such as databases, Open Data

Management Systems (e.g., CKAN, Socrata, etc.), exiting IT platforms (e.g., legacy systems) and sensors.

3.4.4.1 Context Broker

This module provides functionalities for the management of context information lifecycle, providing APIs to

allow the interaction with IoT devices and IT platforms. It uses for its realisation the FIWARE Orion Context

Broker [19]

https://gitlab.com/urbanageeu/age-friendly-route-planner.git
https://gitlab.com/urbanageeu/age-friendly-route-planner.git
https://gitlab.com/urbanageeu/age-friendly-route-planner.git
http://ecosystem.urbanage.eu:8099/
http://ecosystem.urbanage.eu:8099/

© URBANAGE GA no: 101004590 21

D5.3 URBANAGE Ecosystem Prototype. Initial

Table 12: Context Broker

Docker image Dependencies GitLab repository Endpoints

fiware/orion-ld mongoDB https://gitlab.com/urban
ageeu/context-broker.git

NGSI/HTTP interface:
http://ecosystem.urbana

ge.eu:1026/

3.4.4.2 Data Gateway

This module allows the federation of existing Open Data Portals (or Open Data Management Systems –

ODMS) based on different technologies providing a unique access point to search and discover open

datasets coming from them. Its realisation is based on Idra [20].

Table 13: Data Gateway

Docker image Dependencies GitLab repository Endpoints

data-gateway_idra:latest MySQLDB (v5.7)
Sesame (RDF4J Server

and RDF4J Workbench)

https://gitlab.com/urban
ageeu/data-gateway.git

https://ecosystem.urban
age.eu/IdraPortal/

3.4.4.3 Data Repositories Federator

This module, working as a distributes SQL query engine, provides functionalities to perform SQL queries

against different data sources. Its realisation is based on Presto [21].

Table 14: Data Repositories Federator

Docker image Dependencies GitLab repository Endpoints

prestodb:latest Postgres DB https://gitlab.com/urban
ageeu/data-repository-

federator.git

https://ecosystem.urban
age.eu/ui/

https://gitlab.com/urbanageeu/context-broker.git
https://gitlab.com/urbanageeu/context-broker.git
http://ecosystem.urbanage.eu:1026/
http://ecosystem.urbanage.eu:1026/
https://gitlab.com/urbanageeu/data-gateway.git
https://gitlab.com/urbanageeu/data-gateway.git
https://ecosystem.urbanage.eu/IdraPortal/
https://ecosystem.urbanage.eu/IdraPortal/
https://gitlab.com/urbanageeu/data-repository-federator.git
https://gitlab.com/urbanageeu/data-repository-federator.git
https://gitlab.com/urbanageeu/data-repository-federator.git
https://ecosystem.urbanage.eu/ui/
https://ecosystem.urbanage.eu/ui/

© URBANAGE GA no: 101004590 22

D5.3 URBANAGE Ecosystem Prototype. Initial

Figure 11: Data Repositories Federator UI

3.4.5 Platform UIs

An initial version of the User and Admin UIs have been implemented and deployed on the development

server. These contain the first version of the container UI and the login functionality as part of the User UI

and the user management page and services as part of the Admin UI. The UIs are developed in React JS [22],

while the users microservice that offers user management functionalities in front of Keycloak, is developed

in Java Spring Boot [23].

Table 15: Platform UIs

Docker image Dependencies GitLab repository Endpoints

registry.gitlab.com/atceng
/ilab/urbanage/urbanage-

user-manager

Keycloak https://gitlab.com/urban
ageeu/user-admin-ui.git

-

registry.gitlab.com/atceng
/ilab/urbanage/urbanage-

dashboard

User Manager
microservice

https://gitlab.com/urban
ageeu/user-admin-ui.git

http://ecosystem.urbana
ge.eu:5000/

https://gitlab.com/urbanageeu/user-admin-ui.git
https://gitlab.com/urbanageeu/user-admin-ui.git
https://gitlab.com/urbanageeu/user-admin-ui.git
https://gitlab.com/urbanageeu/user-admin-ui.git
http://ecosystem.urbanage.eu:5000/
http://ecosystem.urbanage.eu:5000/

© URBANAGE GA no: 101004590 23

D5.3 URBANAGE Ecosystem Prototype. Initial

Figure 12: Platform UIs - Login page

© URBANAGE GA no: 101004590 24

D5.3 URBANAGE Ecosystem Prototype. Initial

Figure 13: Platform UIs - User registration page

© URBANAGE GA no: 101004590 25

D5.3 URBANAGE Ecosystem Prototype. Initial

4 Conclusion

The goal of this document is to describe the implementation status of the URBANAGE ecosystem as well as

the main platforms and tools used for the deployment of the URBANAGE components, thus it acts as an

accompanying document of the URBANAGE ecosystem release. The integration phase of the technical

components that are being developed in WP3 and WP4 - in releases following the agile principles - allow for

the accomplishment of a functional integrated system. The available components as well as the core

integration activities of the project, as they have been designed up to now, have been presented in this

document. To ensure that the implemented prototype closely follows the real needs of the end user the look

and feel of the interface will be influenced by the work of WP4 in order to create a harmonised look and feel

among all modules.

The tools that are deployed in the URBANAGE server and will aid the URBANAGE ecosystem in areas like

communication, user authentication, monitoring etc. are: Traefik, Keycloak, Kafka, Prometheus, Grafana,

SonarQube as described in section 3.3.

The components/systems installed on our development server based on M15 integration plan are: The Big

Data storage, the Digital Twin System, the Big Data Analytics System, and the Data Management system, as

described in detail under section 3.4.

© URBANAGE GA no: 101004590 26

D5.3 URBANAGE Ecosystem Prototype. Initial

5 References

[1] D5.1 System Architecture & Implementation Plan
[2] D5.2 Initial Platform Prototype
[3] https://www.hetzner.com/dedicated-rootserver/ax101
[4] https://www.hetzner.com/
[5] https://traefik.io/
[6] https://www.keycloak.org/
[7] https://kafka.apache.org/
[8] https://zookeeper.apache.org/
[9] https://github.com/obsidiandynamics/kafdrop
[10] https://prometheus.io/
[11] https://grafana.com/
[12] https://www.sonarqube.org/
[13] https://min.io/
[14] https://www.mysql.com/
[15] https://www.postgresql.org/
[16] https://www.mongodb.com/
[17] https://rdf4j.org/
[18] https://spark.apache.org/
[19] https://fiware-orion.readthedocs.io/en/master/
[20] https://github.com/FIWARE-GEs/idra
[21] https://prestodb.io/
[22] https://reactjs.org/
[23] https://spring.io/projects/spring-boot

https://www.hetzner.com/dedicated-rootserver/ax101
https://www.hetzner.com/
https://traefik.io/
https://www.keycloak.org/
https://kafka.apache.org/
https://zookeeper.apache.org/
https://github.com/obsidiandynamics/kafdrop
https://prometheus.io/
https://grafana.com/
https://www.sonarqube.org/
https://min.io/
https://www.mysql.com/
https://www.postgresql.org/
https://www.mongodb.com/
https://rdf4j.org/
https://spark.apache.org/
https://fiware-orion.readthedocs.io/en/master/
https://github.com/FIWARE-GEs/idra
https://prestodb.io/
https://reactjs.org/
https://spring.io/projects/spring-boot

