
 
 

 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant 
agreement No 101004590 

 

 

 
Deliverable 

D3.1 Data Manager Layer. Initial 
 
 

 

Project Acronym: URBANAGE 
Project title: Enhanced URBAN planning for AGE-friendly cities 

through disruptive technologies 
Grant Agreement No. 101004590 
Website: www.urbanage.eu  
Version: 1.0 
Date: 31/01/2022  
Responsible Partner: ENG 
Contributing Partners: ENG, TEC, ATC, CIC 
Reviewers: Athanasios Dalianis (ATC)  

Christoph Fink (UH) 
Dissemination Level: Public x 

Confidential – only consortium members and European 
Commission  

 

  

Ref. Ares(2022)718506 - 31/01/2022



 

 
 
 

 

© URBANAGE GA no: 101004590  2	
 

D3.1 Data Manager Layer. Initial 

Revision History 

Revision Date Author Organization Description 

0.1 12/08/2021 Giuseppe Ciulla ENG Table of Content 

0.2 17/09/2021 Giuseppe Ciulla ENG Initial draft 

0.3 25/10/2021 Giuseppe Ciulla, Marco Martorana ENG Second draft 

0.4 15/12/2021 Giuseppe Ciulla, Marco Martorana ENG Content for 
section 3 and 

anexes 
0.5 12/01/2022 Giuseppe Ciulla, Marco Martorana ENG Content 

consolidation 
0.6 14/01/2022 Giuseppe Ciulla ENG Document ready 

for internal review 
0.7 21/01/2022 Athanasios Dalianis 

Christoph Fink 
ATC 
UH 

Internal review 

1.0 28/01/2022 Giuseppe Ciulla 
Claudia Vicari 

ENG Final version 

 

  



 

 
 
 

 

© URBANAGE GA no: 101004590  3	
 

D3.1 Data Manager Layer. Initial 

 

Table of Contents 
1	 Executive Summary 8	
2	 Introduction 9	
3	 Data Interoperability 11	

3.1	 Formats 11	
3.1.1	 JSON / JSON-LD 11	
3.1.2	 NGSI / NGSI-LD 12	
3.1.3	 RDF 16	

3.2	 Ontologies 17	
3.2.1	 Semantic Sensor Network ontology 17	
3.2.2	 Smart Applications REFerence ontology 18	

3.3	 Data models 22	
3.3.1	 SmartCities – UrbanMobility 23	
3.3.2	 SmartCities – Building 23	
3.3.3	 SmartCities – QueueMonitor 24	
3.3.4	 SmartCities – PointOfInterest 24	
3.3.5	 SmartCities – ParksAndGardens 25	
3.3.6	 SmartCities – Transportation 26	

4	 Data Management Layer 27	
4.1	 Components of the Data Management Layer 28	

4.1.1	 URBANAGE Connector for IT Platform 32	
4.2	 Data collection, harmonisation and aggregation processes 34	

4.2.1	 Collection and harmonisation of static data 34	
4.2.2	 Collection and harmonisation of real-time data 35	
4.2.3	 Data Aggregation and Integration 36	

4.3	 Overview of Data Access APIs 37	
5	 Conclusion 41	
6	 References 42	
7	 Annex 1 – Overview of Initial datasets from pilot sites 44	
8	 Annex 2 – Main components of URBANAGE Platform interacting with the Data Management Layer 58	



 

 
 
 

 

© URBANAGE GA no: 101004590  4	
 

D3.1 Data Manager Layer. Initial 

9	 Annex 3 – Data Management Layer baseline tools 60	

 

 

Table of Figures 
Figure 1: Overview URBANAGE Platform 10	
Figure 2: Example of JSON object representation 12	
Figure 3: Example of JSON-LD object presentation 12	
Figure 4: NGSI information model 13	
Figure 5: NGSI-LD information model structure 14	
Figure 6: NGSI-LD Core Meta Model 14	
Figure 7: SOSA and SSN ontologies and their modules 17	
Figure 8: Overview of SOSA classes and properties (observation perspective) 18	
Figure 9: SAREF main classes and their relationships 19	
Figure 10: General overview of the top levels of the SAREF4BLDG extension 20	
Figure 11: High level view of the envisioned semantic model for SAREF4HAW ontology 21	
Figure 12: Example of relations between data models belonging to different domains 22	
Figure 13: Overview of the URBANAGE Data Management Layer 28	
Figure 14: Schematic representation of Connector for IT Platform 33	
Figure 15: User interface of Amnesia 34	
Figure 16: Sequence diagram - Collection and harmonisation of static data 35	
Figure 17: Sequence diagram - Collection and harmonisation of real-time data 36	
Figure 18: Sequence diagram – Sample data aggregation process 37	
Figure 19: Airflow UI showing a DAG graphical representation 61	
Figure 20: Presto user interface 62	
Figure 21: Idra user interface 64	
Figure 22: Filtered results from a federated metadata search on Idra 64	
Figure 23: Example mapper command on Datamodel Mapper 65	
Figure 24: Flume Agent components 67	
Figure 25: TRUE Connector components 68	
 

Table of Tables 
Table 1: Resources and HTTP methods defined for main NGSI-LD APIs 15	
Table 2: Data Management Layer baseline technological tools 31	
Table 3: APIs exposed by Data Gateway 38	
Table 4: APIs exposed by Data Repository Federator 39	
Table 5: Apache Airflow Architecture Components 60	
Table 6: Presto server types 61	
Table 7: Presto DB possible query states 62	
Table 8: Idra APIs groups 63	



 

 
 
 

 

© URBANAGE GA no: 101004590  5	
 

D3.1 Data Manager Layer. Initial 

Table 9: Data Model Mapper steps 65	
Table 10: IoT Agents and communication protocols 67	
Table 11: TRUE Connector components 68	
 

  



 

 
 
 

 

© URBANAGE GA no: 101004590  6	
 

D3.1 Data Manager Layer. Initial 

List of abbreviations 

Abbreviation Explanation 

API Application Programming Interface 

BDS Big Data Analytic System 

CI/CD Continuous Integration and Continuous Delivery 

CIDB Context Information Data Bridge 

CityGML City Geography Markup Language 

CKAN Comprehensive Knowledge Archive Network 

CSV Comma-Separated Values 

DAG Directed Acyclic Graphs 

DBMS Database Management Systems 

DCAT Data Catalog Vocabulary 

DACT-AP DCAT Application Profile 

DL Deep Learning 

DML Data Management Layer 

ETSI European Telecommunications Standards Institute 

GE Generic Enabler 

HTTP Hypertext Transfer Protocol 

HTTPS Hypertext Transfer Protocol Secure 

IoT Internet of Things 

IT Information Technology 

JSON JavaScript Object Notation 

JSON-LD JSON Linked Data 

KML Keyhole Markup Language 

LAM Liikenteen Automaattinen Mittaus (Automatic Traffic Measurement) 

LOD Linked Open Data 



 

 
 
 

 

© URBANAGE GA no: 101004590  7	
 

D3.1 Data Manager Layer. Initial 

ML Machine Learning 

N3 Notation-3 

NGSI Next Generation Service Interfaces 

ODMS Open Data Management Systems 

OMA Open Mobile Alliance 

RDF Resource Description Format 

RDFS RDF Schema 

REST Representational State Transfer 

SAREF Smart Applications REFerence 

SOSA Sensor, Observation, Sample, and Actuator 

SSN Semantic Sensor Network 

Turtle Terse RDF Triple Language 

UI User Interface 

URI Uniform Resource Identifier 

WMS Web Map Service 

 

 

  



 

 
 
 

 

© URBANAGE GA no: 101004590  8	
 

D3.1 Data Manager Layer. Initial 

1 Executive Summary 

This document describes the first version of the design of the Data Management Layer (DML) of the 

URBANAGE Platform. The purpose of the DML is to enable the URBANAGE Platform to collect data from 

heterogeneous sources, aggregate different types of information and harmonise them using common 

ontologies. 

For this purpose, this document presents and describes data formats (such as JSON-LD and NSGI-LD), 

ontologies (such as SAREF and some of its extensions) and data models (as the ones offered by the Smart Data 

Models initiatives) to set the ground for a uniform and interoperable representation of the collected data. 

Then, the initial design of the Data Management Layer is presented highlighting the connection with the 

possible typologies of data sources, as well as the other foreseen components of the URBANAGE Platform. 

The logical components of the DML and the relations among them are so described and the baseline technical 

tool for their realisation are introduced; among them 

• the Orion Context Broker for the management of context information (that is also one of the building 

blocks promoted by the Connecting Europe Facility Programme1 and represents an interoperability 

point with future initiatives) and 

• Idra for the harmonisation of metadata of datasets managed by Open Data Portals (or Open Data 

Management Systems) and for the realisation of catalogues to search and discover datasets managed 

by the DML. 

This document also presents an overview of the processes adopted by the DML to collect and harmonise both 

static and real-time data, as well as an overview of the main APIs exposed by the DML to access the managed 

data. 

Finally, annexes report a summary of the dataset identified by the use cases, the overview of the main 

components of the URBANAGE platform that interact with the Data Management Layer, and the technical 

details of the baseline tools for its implementation. 

 

  

 
1 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/CEF+Digital+Home 



 

 
 
 

 

© URBANAGE GA no: 101004590  9	
 

D3.1 Data Manager Layer. Initial 

2 Introduction 

The Data Management Layer (DML) is part of the URBANAGE Platform, whose main objective is to offer an 

ecosystem that integrates capabilities for multidimensional analysis of Big Data, modelling and simulation with 

Artificial Intelligence algorithms and visualization through Urban Digital twins. 

 

Considering the conceptual drawing of URBANAGE's software architecture (Figure 1), DML represents the 

interface of the URBANAGE Platform with the possible data sources that will offer the data to feed the 

capabilities of the platform itself. In a few words, within the overall framework of URBANAGE's software 

architecture, the DML aims to provide the mechanisms and procedures that allow the URBANAGE Platform to 

collect, aggregate and harmonise heterogeneous data coming from diverse data sources. 

 

In particular, the DML will allow the URBANAGE Platform to collect data from both open and private data 

sources, by supporting different technologies and systems (e.g. IoT devices and platforms, open data portals, 

databases and city legacy systems). Leveraging common ontologies (e.g. SAREF) and standard data format (e.g. 

NGSI-LD), the DML will allow to harmonise and aggregate the collected data, following a uniform 

representation, through the adoption and definition of common data models. The DML will make the managed 

data available to other components of the URBANAGE through a set of APIs. 

 

From a technical viewpoint, the DML reuses existing open-source tools components, and its design integrates 

them to fit the specific needs of the URBANAGE Platform related to data collection aggregation and 

harmonisation. Furthermore, to foster interoperability with both data sources and with the other components 

of the whole URBANAGE Platform, the design of the DML followed the no-vendor lock-in principle, by making 

use of open API and common data models for interoperability. 

 

Deliverable “D5.1 System Architecture & Implementation Plan” provides details about the overall architecture 

of the URBANAGE Platform. 

 

This document is organized in six sections. 

• Section 1 is the executive summary of this document 

• Section 2 is the introduction (this section) 

• Section 3 introduces the candidate data formats, ontologies and data models for the implementation 

of the Data Management Layer. 

• Section 4 describes the Data Management Layer, its design, the components and the processes for 

data collection, harmonisation and aggregation. 

• Section 5 presents the conclusion, while 

• Section 6 contains the references cited in this deliverable. 

 

Furthermore, three annexes are included in this document. 



 

 
 
 

 

© URBANAGE GA no: 101004590  10	
 

D3.1 Data Manager Layer. Initial 

• “Annex 1 – Overview of Initial datasets from pilot sites” offers an overview of the initial datasets 

identified by within the three pilot sites of the project (Santander, Flanders, and Helsinki). 

• “Annex 2 – Main components of URBANAGE Platform interacting with the Data Management Layer” 

briefly reports the components of the URBANAGE Platform that have a direct interaction with the Data 

Management Layer 

• “Annex 3 – Data Management Layer baseline tools” describe the baseline technological tools for the 
implementation of the Data Management Layer 

Figure 1: Overview URBANAGE Platform2 

 
  

 
2 Image from deliverable “D5.1 System Architecture & Implementation Plan” 

Data Sources
Open data 

Sources

IoT agent
(Sensors and 

devices)

IT 
platforms

Data
repositories

Data management

Data Modelling and integrationData Storage

Big Data Analytic system
Digital Twin system

BDS Others

Queue
Content
Broker API - SPARQL

Geospacial
integration

Semantic 
modelling

TimeSeries 
modelling NLP

Data Analytics

Simulation Optimization ML-DL 
algorithms

Sentiment 
analysis

Urban Data Source
Cadastre

City Information Visualization
City mirror viewer

Dashboards

Gamification

Connector
Connectors

Dacain | City Mirror

City Information Modelling

API

URBANAGE platform

URBANAGE Middleware

Data Sources
Open data 

Sources

IoT agent
(Sensors and 

devices)

IT 
platforms

Data
repositories

Data Modelling and integration

Big Data Analytic systemDigital Twin system

Context
Broker Data Gateway

Geospatial
integration

Timeseries
modelling

Simulation OptimizationDescriptive/ Predictive/ 
Prescriptive analysis

Urban Data Source
Cadastre

City Information Visualization
City mirror viewer

Data Repositories 
Federator

Connectors
Dacain | City Mirror

City Information Model

API

Se
cu

rit
y 

+ 
Id

en
tit

y 
M

an
ag

er

User UI Data exploration and visualization

W
or

kf
lo

w
 

m
an

ag
em

en
t 

Admin UI

Data Storage

BDS Others

ML/DL 
algorithms

Big Data Analytics, AI Algorithms and Simulation Tools

Da
ta

 
An

al
yt

ics

Data 
management

Message 
Bus

URBANAGE UI



 

 
 
 

 

© URBANAGE GA no: 101004590  11	
 

D3.1 Data Manager Layer. Initial 

3 Data Interoperability 

The Data Management Layer will represent an interoperability point between the whole URBANAGE platform 

and data sources. Data sources include data repositories, sensors, (legacy) IT Systems and Open Data 

Management Systems that will be interconnected to the platform itself to get the data they offer and to 

achieve semantic interoperability. Semantic interoperability is a fundamental building block, together with the 

adoption of open standards to enable collaboration between organizations and systems and to avoid 

information silos. 

 

In a few words, to achieve data interoperability, it is necessary to establish a common data format to 

concretely represent the information. The data format defines how the information is structured and how 

machines can read it. But the data format doesn't establish any relation among the different pieces of the 

information to represent. Nevertheless, this is what ontologies do. An ontology defines the different concepts 

belonging to one or more domains (e.g. building, smart cities, environment, etc.), together with their relative 

properties and relations.  

 

Finally, data models offer a well-defined way to represent the information; a data model leverages a data 

format (to structure the information and the relations among the different pieces of the information) and one 

or more ontologies to properly represent the parts of the information it contains and their relations, among 

the contained parts, as well as with other data models. 

 

This section briefly describes the candidate data formats, ontologies and data models for the implementation 

of the Data Management Layer. 

3.1 Formats 

3.1.1 JSON / JSON-LD 
JSON (JavaScript Object Notation) is a lightweight data interchange format. It is promoted as a low-overhead 

alternative to XML. It is a text-based format that is completely language independent based on a subset of the 

JavaScript Programming Language Standard [1]. JSON defines a small set of structuring rules for the portable 

representation of structured data. It is agnostic about numbers offering only the representation of numbers 

that humans use: a sequence of digits. 

JSON is built on two data structures: 

• A collection of name/value pairs. 

• An ordered list of values. 

These are universal data structures that in various languages are represented respectively as objects, records, 

dictionaries, hash tables (i.e. collections in JSON) and array, vectors, list, or sequences (i.e. ordered list in 

JSON). 

 



 

 
 
 

 

© URBANAGE GA no: 101004590  12	
 

D3.1 Data Manager Layer. Initial 

A typical JSON object is an unordered set of name/value pairs that begins with left brace “{” and ends with 

right brace “}”. Each name is followed by “:” colon and the name/value pairs are separated by “,” comma. 

Figure 2 depicts an example of a JSON object. 

Figure 2: Example of JSON object representation 

 
 

JSON-LD (JavaScript Object Notation for Linked Data) is a lightweight Linked Data format, easy for humans to 

read and write, based on the JSON format [2] [3]. JSON-LD is designed around the concept of a "context" to 

provide additional mappings from JSON to an RDF model (see section 3.1.3 about RDF). The context links 

object properties in a JSON document to concepts in an ontology. In order to map the JSON-LD syntax to RDF, 

JSON-LD allows values to be coerced to a specified type or to be tagged with a specific spoken language. A 

context can be embedded directly in a JSON-LD document or put into a separate file and referenced from 

different documents via a specific HTTP link. Figure 3 depicts an example of a JSON-LD object representation. 

Figure 3: Example of JSON-LD object presentation 

 

3.1.2 NGSI / NGSI-LD 
The FIWARE Foundation3 has adopted the NGSI specifications [4] initially issued by OMA (Open Mobile 

Alliance)4 as the reference standard for implementing the information model used in its architecture. The 

FIWARE NGSI information model was implemented in the FIWARE ecosystem and later evolved into NGSI-LD 

to support linked data. Indeed, context definition, with all terms used, is the main new element in NGSI-LD as 

it is based on JSON-LD. Relevant benefits of these independent open standards are mainly devoted to achieve 

interoperability avoiding “vendor lock-in". 

 

 
3 A non-profit organization defining and promoting the adoption of open standards for the development of smart 

solutions across different domains such as Smart Cities, Smart Energy, Smart AgriFood and Smart Industry. - 

https://www.fiware.org/ 
4 A non-profit non-governmental organization developing open, international technical standards for the mobile phone 

industry. Recently renamed “OMA SpecWorks” - https://omaspecworks.org/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  13	
 

D3.1 Data Manager Layer. Initial 

NGSI Information model  

The FIWARE NGSI information model is composed of three main elements that are respectively Entities, 

Attributes and Metadata, depicted in Figure 4.  

Figure 4: NGSI information model 

 
 

Entities are the "central” elements in the FIWARE NGSI information model. An entity in NGSI is a generic 

concept and can be anything; it depends completely on the data model of the user. Indeed, an entity 

represents a generic thing, any physical or logical object (e.g., a sensor, a person, a room, an issue in a ticketing 

system, etc.). Each entity has the mandatory field “id” with which it can be recognized. 

Furthermore, the “type” field enables entities to have an entity type. Entity types are semantic types that are 

used to categorise the type of thing represented by the entity. 

At the end, each entity is uniquely identified by the combination of its id and type; both fields are mandatory 

to define an NGSI entity. 

 

Attributes are properties of context entities. They describe the entity they belong to. In the NGSI data 

model, attributes have a “name”, a “type”, a “value” and can be associated to metadata. 

The attribute “name” describes what kind of property the attribute value represents, for example, 

“temperature”. The attribute “type” represents the NGSI value type of the attribute value, which is usually 

similar or equivalent to the JSON datatype. The attribute “value”, finally, contains the actual data.  

 

Metadata is used as an optional part of an attribute. Like attributes, metadata has “name”, “type” and “value”.  

 

NGSI-LD Information model 

The NGSI-LD Information Model is an evolution of NGSI that support linked data [5]. It prescribes the structure 

of context information that shall be supported by an NGSI-LD system specifying the data representation 

mechanisms to be used by the NGSI-LD API. Furthermore, the structure of the Context Information 

Management vocabularies to be used are defined. The NGSI-LD Context Information Management APIs allow 

users to provide, consume and subscribe to context information in multiple scenarios and involving multiple 

stakeholders. These APIs enables close to real-time access to information coming from many different sources 

typology not only IoT data sources but also IT systems in general. 

 

The NGSI-LD Information Model, which is based on JSON-LD, is defined at two levels: the foundation classes 

corresponding to the Core Meta-model, and the Cross-Domain Ontology. The domain-specific ontologies or 

vocabularies can be developed on top of these two nested levels. 

 



 

 
 
 

 

© URBANAGE GA no: 101004590  14	
 

D3.1 Data Manager Layer. Initial 

Figure 5: NGSI-LD information model structure 

 
 

A graphical representation of the NGSI-LD core Meta-Model in terms of classes and their relationships has 

been reported in Figure 6. 

Figure 6: NGSI-LD Core Meta Model 

 
 

Implementations have to support the NGSI-LD Meta-model as follows: 

• An NGSI-LD Entity is a subclass of rdfs:Resource  

• An NGSI-LD Relationship is a subclass of rdfs:Resource  

• An NGSI-LD Property is a subclass of rdfs:Resource  

• An NGSI-LD Value have to be either a rdfs:Literal or a node object to represent complex data structures 

• An NGSI-LD Property shall have a value, stated through hasValue, which is of type rdf:Property  

• An NGSI-LD Relationship shall have an object stated through hasObject which is of type rdf:Property 

 

NGSI-LD API for Context Information Management 

Concerning interoperability with external systems and applications, NGSI-LD provides a simple and consistent 

way to manage context information (Entity types, entities, attributes) through standard HTTP operations (GET, 

POST, PUT, PATCH, DELETE). Indeed, NGSI-LD provides APIs that allow to execute different operations, such 

as: 

• Subscription / Notification 

• Mechanisms devoted to federation 

• Data Gathering 



 

 
 
 

 

© URBANAGE GA no: 101004590  15	
 

D3.1 Data Manager Layer. Initial 

• Geo-queries 

• Temporal operations 

• Data “renderings” in multiple formats (key value, normalized, GeoJSON) 
 

Table 1 reports an overview of the most relevant APIs defined by NGSI-LD. All resource URIs have the following 

root path: {apiRoot}/{apiName}/{apiVersion}/ 

Table 1: Resources and HTTP methods defined for main NGSI-LD APIs 

Resource Name Resource URI HTTP 
Method 

Description 

Entity List /entities/ POST This API is in charge of creating a 
new entity 

GET This API is in charge of performing 
queries against the existing 
entities 

Entity by Id /entities/{entityId} 

 

GET This API is in charge of retrieving 
an entity by its Id 

DELETE  This API is in charge of deleting 
and entity by its Id 

Entity Attribute List /entities/{entityId}/attrs/ POST This API is in charge of appending 
a new attribute to an existing 
entity 

PATCH This API is in charge of updating 
the attributes of an existing entity 

Attribute by Id /entities/{entityId}/attrs/{attrId} PATCH This API is in charge of updating a 
specific attribute (by its Id) of an 
existing entity 

DELETE This API is in charge of deleting a 
specific attribute (by its Id) of an 
existing entity 

Subscriptions List /subscriptions/ POST This API is in charge of creating a 
subscription 

GET This API is in charge of retrieving 
the existing subscriptions 

Subscription by Id /subscriptions/{subscriptionId} GET This API is in charge of retrieving a 
specific subscription by its Id 

PATCH This API is in charge of updating a 
specific subscription by its Id 

DELETE This API is in charge of deleting a 
specific subscription by its Id 

Entity Types /types/ GET This API is in charge of retrieving 
the available entity types 

Entity Type /types/{type} GET This API is in charge of retrieving 
details about a specific available 
entity type 



 

 
 
 

 

© URBANAGE GA no: 101004590  16	
 

D3.1 Data Manager Layer. Initial 

Attributes /attributes/ GET This API is in charge of retrieving 
the available attributes 

Attribute /attributes/{attrId} GET This API is in charge of retrieving 
the details about a specific 
available attribute by its Id 

 

3.1.3 RDF 
RDF (Resource Description Framework) [6] is a standard model for data interchange on the Web. RDF was 

created by the W3C to represent and use structured metadata and to ensure interoperability between 

different resources that share information on the Web. It allows the simple representation of data semantics. 

It is used also as a standard for Open Data published on the World Wide Web. Indeed, the information encoded 

in RDF can be easily manipulated by agents and automatic machines. Concepts represented with RDF can 

always be accessed on the Web because they are identified by a unique URIs Indeed, RDF extends the linking 

structure of the Web to use URIs to name the relationship between things as well as the two ends of the link 

(this is usually referred to as a “triple”). Using this simple model, it allows structured and semi-structured data 

to be mixed, exposed, and shared across different applications. 

 

RDFS (RDF Scheme) [7] is an extension of RDF that deals with defining simple schemes to represent data and 

exposes the syntax to define the vocabularies for metadata. Resources can be represented by class instances 

and properties and constraints by subclasses, types and collections. In this way, the RDF triples can be 

connected through simple constructs, such as inheritance and extension relationships between classes, while 

common types of constraints can be those of domain and range. RDF enables effective data integration from 

multiple sources, detaching data from its schema.  

 

It provides basic elements for the description of ontologies.  Indeed, RDF is one of the main languages of the 

semantic web allowing to encode the relationships between subjects and objects through predicates. The set 

of relationships makes it possible to obtain a representation of knowledge. In RDF to define a relationship 

between things a “triple” is generally used to formalize this relation. 

 

A brief description about each element of this triple is described below: 

• Subject. A subject is always a uniquely identified resource (URI). It can be a person, a thing, an abstract 
concept, etc. 

• Predicate. A predicate allows to create a relationship between a subject and an object. The same 

subject can have different relations with other objects.  

• Object. An object can be either a uniquely identifiable resource (URI) or a piece of data. 



 

 
 
 

 

© URBANAGE GA no: 101004590  17	
 

D3.1 Data Manager Layer. Initial 

3.2 Ontologies 

3.2.1 Semantic Sensor Network ontology 
The Semantic Sensor Network (SSN) [8] is an ontology for describing sensors and their observations, the 

involved procedures, and the observed properties, etc. SSN follows a horizontal and vertical modularization 

architecture by including a lightweight but self-contained core ontology named SOSA (Sensor, Observation, 

Sample, and Actuator) for its elementary classes and properties [9]. 

 

Ontology modularization is a common method used in ontology engineering to segment an ontology into 

smaller parts. In general, ontology modularization aims at providing users of ontologies with the knowledge 

they require, reducing the scope as much as possible to what is strictly necessary in a given use case. SSN 

strongly uses two main approaches for ontology modularization: vertical and horizontal. With the vertical 

modularisation, modules are stacked on each other by using owl:import statement (with this approach it is 

mandatory to respect the chain of “import”, otherwise inconsistencies may occur). With the horizontal 

modularisation, modules do not depend on each other; concept of different modules can be connected making 

use of a directional property (e.g. subClassOf). 

Figure 7: SOSA and SSN ontologies and their modules5 

 
 

In SOSA/SSN several conceptual modules have been defined to cover key sensor, actuation and sampling 

concepts. Figure 8 provides an overview of the main classes and properties inside the ontology modules, from 

the perspectives of Observation, Actuation and Sampling.  

 
5 Image from SSN web page https://www.w3.org/TR/vocab-ssn/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  18	
 

D3.1 Data Manager Layer. Initial 

Figure 8: Overview of SOSA classes and properties (observation perspective) 

 

3.2.2 Smart Applications REFerence ontology 
SAREF (Smart Applications REFerence) ontology [10] promoted by ETSI (European Telecommunications 

Standards Institute)6 aims to define a common background with standardized interfaces and data models to 

ensure interoperability among platforms and systems. 

SAREF has been designed following principles such as modularity, extensibility, maintainability and reuse and 

alignment. 

• Modularity to allow separation and recombination of different parts of the ontology based on specific 

needs. 

• Extensibility to allow further growth of the ontology. 

• Maintainability to facilitate the process of identifying and correcting defects, develop new 
requirements. 

• Reuse and alignment of concepts and relationships that are defined in existing assets. 

 

SAREF focuses on the concept of device, which is defined as a tangible object designed to accomplish a 

particular task in a specific domain/site. In order to accomplish this task, a device performs one or more 

functions. Typical examples of devices are elevator failure sensors, escalator operation sensors, 

temperature/humidity sensors, light switches, etc. Figure 9 depicts the saref:Device class and its properties.  

 
6 A not-for-profit organization in the field of information and communications - https://www.etsi.org/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  19	
 

D3.1 Data Manager Layer. Initial 

Figure 9: SAREF main classes and their relationships7 

 
 
SAREF includes different extensions, each of them addressing a specific domain. Currently, the available 

extensions are: 

• SAREF4ENER: Energy domain 

• SAREF4ENVI: Environment domain 

• SAREF4BLDG: Building domain 

• SAREF4CITY: Smart Cities domain 

• SAREF4INMA: Industry and Manufacturing domains 

• SAREF4AGRI: Smart Agriculture and Food Chain domains 

• SAREF4AUTO: Automotive domain (under development) 

• SAREF4EHAW: eHealth/Ageing-well domain 

• SAREF4WEAR: Wearables domain 

• SAREF4WATR: Water domain 

 

Currently, in the context of URBANAGE, two SAREF extensions have been identified as relevant for the 

project’s purposes:  

• SAREF4BLDG 

• SAREF4EHAW 

 

SAREF4BLDG [11] extends classes, properties and data types provided by SAREF ontology to specifically enable 

a representation for building domain and their physical objects. For example, the classes s4bldg:Building, 

s4bldg:BuildingSpace and s4bldg:PhysicalObject have been declared as subclasses of the class 

geo:SpatialThing in order to reuse the conceptualization for locations already proposed by the geo ontology. 

 
7 Image from SAREF ontology web page https://saref.etsi.org/core/v3.1.1/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  20	
 

D3.1 Data Manager Layer. Initial 

The concepts s4bldg:Building and s4bldg:BuildingSpace are related to each other by means of the properties 

s4bldg:hasSpace and s4bldg:isSpaceOf. 

 

The relationship between building spaces and devices and building objects has also been transferred and 

generalized from the core SAREF ontology. Regarding this aspect, a s4bldg:BuildingSpace can contain 

individuals belonging to the class s4bldg:PhysicalObject. This relation typology can be represented by the 

specific property s4bldg:contains. Moreover, a class representing s4bldg:BuildingDevice is defined as a 

subclass of both saref:Device and s4bldg:BuildingObject classes, then using classes and properties from the 

base and the extended ontology for building domain, as reported in Figure 10. 

Figure 10: General overview of the top levels of the SAREF4BLDG extension8 

 
 

In the context of URBANAGE, diverse devices, sensors, buildings typology (such as public buildings and offices) 

could be potentially taken into account. For example, typical buildings could be postal offices, medical centre, 

pharmacies, recreation centre etc. In this sense, SAREF4BLDG offers elements and concepts that are 

interesting for URBANAGE project. 

 

SAREF4EHAW [12] stands for SAREF for the eHealth/Ageing-well. It is an extension of the SAREF ontology that 

has been specified and formalised by investigating “eHealth and Ageing-well” domain related resources. 

 

SAREF4EHAW, by extending SAREF ontology for the eHealth and Ageing-well vertical, make uses of following 

concepts: system actors, health devices, contacts that link system actors to health devices, wearable devices, 

and classes mainly used for collecting, aggregating and relaying patient/user vital parameters and 

measurements. 

 
8 Image from SAREF4BLDG web page https://saref.etsi.org/saref4bldg/v1.1.2/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  21	
 

D3.1 Data Manager Layer. Initial 

Figure 11: High level view of the envisioned semantic model for SAREF4HAW ontology9 

 
 

The semantic model for SAREF4EHAW ontology makes use of diverse "properties" oriented to health domain: 

"users" that can have "habits" for example. URBANAGE can leverage this ontology, for instance to represent 

"habits" of older people extending this concept also to mobility or “pedestrian movements” in general (such 

as movements around specific point of interest). Strictly vertical properties related to health and vital 

parameter are not taken into account at the moment.  

 
9 Image from SAREF4EHAW web page https://saref.etsi.org/saref4ehaw/v1.1.1/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  22	
 

D3.1 Data Manager Layer. Initial 

3.3 Data models 
Data Models play a crucial role because they define the harmonised representation formats and semantics 

that will be used by applications both to consume and to publish data. 

 

This section provides an overview of some NGSI-LD data models identified as possible candidate for 

URBANAGE. These data models are mainly related to the Smart Data Models Initiative10. This initiative is 

currently supported by the FIWARE Foundation with the contribution of other organizations. Smart Data 

Models is a collaborative initiative to provide multisector agile standardized free and open-licensed data 

models based on actual use cases and open standards. The provided data models are designed to keep 

relations between them leveraging both the ontologies on which they are based and the NGSI-LD capabilities. 

 

Figure 12 depicts a set of NGSI-LD compliant data models related to domains and provided by the Smart Data 

Models initiative. The picture also reports the relation among them. 

 

Figure 12: Example of relations between data models belonging to different domains11 

 

 

The next sections offer a summary of currently identified data models useful for project purposes The full list 

of data models is available on GitHub12 with their relative documentation and JSON schemas. 

 
10 https://smartdatamodels.org/ 
11 Image from Smart Cities Ontology for Digital Twins web page https://techcommunity.microsoft.com/t5/internet-of-

things-blog/smart-cities-ontology-for-digital-twins/ba-p/2166585 
12 https://github.com/smart-data-models 



 

 
 
 

 

© URBANAGE GA no: 101004590  23	
 

D3.1 Data Manager Layer. Initial 

3.3.1 SmartCities – UrbanMobility13 
This is a collection of data models correlated to urban mobility. It includes 16 data models that transpose most 

of the information provided by the Google format General Transit Feed Specification (GTFS) [13] that defines 

a common format for public transportation schedules and associated to geographic information into the NGSI-

LDLD information model, such as the route of a bus, its stops, the frequency, etc.   

In particular, three data models are interesting for the purposes of the project, since they make use of the 

field "wheelChairAccessible" to indicates wheelchair accessibility: 

• GtfsTrip - Identify a GTFS trip with data about trip (direction, shortName, destination, etc) 

• GtfsStop - Identify a GTFS stop (stop, station or station entrance) and data (stop name, URL of a web 

page about the location, location type, etc) 

• GtfsStation - Identify a GTFS Station and data about station (name, location, address, type, relation 

with GTFS stop, etc) 

 

The field "wheelChairAccessible" can have the following values: 

• 0 - No accessibility info  

• 1 - One rider in a wheelchair can be accommodated 

• 2 - No riders in wheelchair can be accommodated 

3.3.2 SmartCities – Building14 
The SmartCities Building is a collection of data models related to building information. This collection is 

composed of three main data models; the more relevant ones for building and for building operation are: 

• Building - Information on a given Building. 

• Building Operation - Information on a given Building Operation. 

 

More specifically, while the Building data model provides information on a specific building, the data model 

Building Operation contains a harmonised description of a generic operation, related to a smart building.  

 

A partial list of more relevant properties of Building data model with a brief description is reported below: 

• category: Category of the building.  

• openingHours: Opening hours of this building. 

• address: The mailing address. 

• description: A description of this item. 

• type: NGSI Entity type. 

• refMap: Reference to the map containing the building. 

  

 
13 https://github.com/smart-data-models/dataModel.UrbanMobility 
14 https://github.com/smart-data-models/dataModel.Building 



 

 
 
 

 

© URBANAGE GA no: 101004590  24	
 

D3.1 Data Manager Layer. Initial 

Similarly, regarding the Building Operation data model a list of more useful properties is reported below: 

• operationType: Type of the operation on the building. 

• refBuilding: Building reference where the operation is performed.   

• refOperator: Reference to the Operator doing the operation on the building.   

3.3.3 SmartCities – QueueMonitor15 
The QueueMonitor data model was originally defined by the SynchroniCity16 project. This data model allows 

to monitor queues on a daily run. Indeed, it describes a single queue line for a single service (for instance 

provided by an office located in a building). 

 

The QueueMonitor data model makes use of different "properties"; the most relevant are: 

• operationType: Type of the operation on the building. 

• refBuilding: Building reference where the operation is performed. 

• refOperator: Reference to the Operator doing the operation on the building. 

 

URBANAGE could leverage this data model to manage information related to queues for specific buildings, 

such as post offices in a public or private structure. 

3.3.4 SmartCities – PointOfInterest17 
This collection includes data models to represent points of interest; three data models are for specific types 

of points of interest (Museum, Store, and Beach). the fourth data model (PointOfInterest) is more general and 

allows to represent a generic point of interest. All these data models could be useful to represent points of 

interest for older people. A full taxonomy defining the categories of points of interests is available on GitHub18. 

• Museum: It is a data model contain model for a museum in a city. Its more relevant properties are: 
o buildingType: Type of building that hosts the museum. 

o facilities: Describes different facilities offered by this museum. (For example, enumeration 

values are: elevator, cafeteria, shop, auditory, conferenceRoom etc) 

o featuredArtist: Main featured artist(s) at this museum 

o museumType: Type of museum according to the exhibited content. (For example, 

enumeration values are: appliedArts, scienceAndTechnology, fineArts, music, etc) 

o name: The name of this item/museum. 

• Store: It is a data model contain models stores/shops in a city. Its more relevant properties are: 
o category: Category of the store. 

o description: A description of this item 

 
15 https://smart-data-models.github.io/dataModel.QueueManagement/QueueMonitor/doc/spec.md 
16 Synchronicity Project - https://cordis.europa.eu/project/id/732240/en 
17 https://github.com/smart-data-models/dataModel.PointOfInterest 
18 PointOfInterest Taxonomy - 

https://raw.githubusercontent.com/Factual/places/master/categories/factual_taxonomy.json 



 

 
 
 

 

© URBANAGE GA no: 101004590  25	
 

D3.1 Data Manager Layer. Initial 

o email: The email address of this store. 

o telephone: The telephone number of this store. 

o type: NGSI Entity type. It has to be Store. 

o name: The name of this item. 

• Beach: It is a data model contain model for a beach. Its more relevant properties are: 

o accessType: how it is possible to access the beach; possible values are: privateVehicle, boat, 

onFoot, publicTransport. 

o beachType: generic characterisation of the beach; examples of possible values are: whiteSand, 

urban, isolated, calmWaters, strongWaves, windy, blackSand, etc. 

o facilities: facilities offered by a beach; exaples of possible values are: promenade, showers, 

cleaningServices, lifeGuard, sunshadeRental, sunLoungerRental, waterCraftRental, toilets, 

touristOffice, litterBins, telephone, accessforDisabled, etc. 

o occupationRate: typical occupation rate of this beach; possible values are: low, medium, high, 

none. 

o peopleOccupancy: current amount of people 

o areaServed: the geographic area served by the beach. 

• PointOfInterest: It is a data model contains a harmonised description of a generic Point of Interest. Its 

more relevant properties are: 

o category: Category of this point of interest. 

o name: The name of this item. 

o type: NGSI Entity type that has to be PointOfInterest. 

o areaServed: the geographic area where the point of interest is located (and served by it). 

3.3.5 SmartCities – ParksAndGardens19 
This data model collection is composed of three diverse data models as follow described: 

• Garden. A garden is a distinguishable planned space, usually outdoors, set aside for the display, 

cultivation, and enjoyment of plants and other forms of nature. 

• GreenspaceRecord. This entity contains a harmonised description of the conditions recorded on a 

particular area or point inside a greenspace (for example flower bed, garden, etc.). 

• FlowerBed. A garden plot in which flowers (or other plants) are grown. Usually, you will find flower 

beds in parks, gardens, pedestrian areas or at big highway interchanges.  

 
19 https://github.com/smart-data-models/dataModel.ParksAndGardens 



 

 
 
 

 

© URBANAGE GA no: 101004590  26	
 

D3.1 Data Manager Layer. Initial 

3.3.6 SmartCities – Transportation20 
This is a collection of data models related to transportation. It comprises 22data models; the more relevant 

for URBANAGE are: 

• TransportStation - The data model is a general description of urban stations (Metro, Bus, Tram, 

Heliport, etc.) according to the GTFS standard. 

• RestrictedTrafficArea - An area of a city in which the traffic generated by cars or any other kind of 

vehicles is subjected to limitation. 

• BikeHireDockingStation - Bike Hire Docking Station.  

 
20 https://github.com/smart-data-models/dataModel.Transportation 



 

 
 
 

 

© URBANAGE GA no: 101004590  27	
 

D3.1 Data Manager Layer. Initial 

4 Data Management Layer 

The Data Management Layer offers the functionalities to access, collect, aggregate and harmonise (leveraging 

common ontologies and NGSI-LD standard) both static and real-time data coming from heterogeneous 

sources, such as databases, Open Data Management Systems (e.g. CKAN, Socrata, etc.), existing IT platforms 

(e.g. legacy systems) and sensors. 

The data collected and harmonised by the Data Management Layer belong to three categories: static data 

coming from repositories (such as databases); real-time coming from IoT devices or existing IT platforms; 

metadata of datasets managed by Open Data Management Systems. 

The managed data is so exposed and made available to the other components of the URBANAGE platform 

(e.g. to apply analytics). 

Under this perspective, the Data Management Layer acts as a bridge between the data sources and the high-

level components of the URBANAGE platform, enabling the latter to access the data they need through a 

unified data API and model. These components are mainly represented by the “Big Data Analytics”, the “AI 

Algorithms and simulation tools” the “City Information Model” and the “URBANAGE UI”; in addition, other 

two components interact with the Data Management Layer: the “Workflow Management” and the “Message 

Bus”. 

 

This section, first introduce the logical components of the Data Management Layer, the relations among them 

and technological tools to build them. Then describes the general processes followed by the Data 

Management Layer for the data collection, harmonisation and aggregation processes. Finally, an overview of 

the APIs exposed by the Data Management Layer is provided. 

 

Figure 13 depicts the general overview of the overall Data Management Layer, the relations among its internal 

components and with the other components of the URBANAGE Platform that can interact with it A brief 

description of the main components of the URBANAGE Platform that interacts with the DML is reported in 

Annex 2 – Main components of URBANAGE Platform interacting with the Data Management Layer.  



 

 
 
 

 

© URBANAGE GA no: 101004590  28	
 

D3.1 Data Manager Layer. Initial 

Figure 13: Overview of the URBANAGE Data Management Layer21 

 

4.1 Components of the Data Management Layer 
The Data Management Layer (DML) is composed of seven components; these are the Data Gateway, the Data 

Repositories Federator, and the Context Broker, which are also the core components of the DML, the 

Datamodel Mapper, the Context Information Data Bridge, the IoT Agents, and the URBANAGE Connectors for 

IT Platforms. 

 

Figure 13 depicts within the boundaries of the DML also the URBANAGE Data Lake, that is the part of the Big 

Data Analytics components devoted to the storage of the data feeding the (big data) analysis. The URBANAGE 

Data Lake is depicted within the DML to better clarify the connections with the components of the DML itself 

with it. More details about the URBANAGE Data Lake are available in the deliverable “D3.5 Big Data Analytics 

components (Initial)” 

 

The Data Gateway (based on Idra22) provides the functionalities to search and discover the datasets managed 

both by the URBANAGE platform, as well as external systems, such as Open Data Management Systems (e.g. 

 
21 The purpose of lines with different colours in the figure is to better represent the connections among the modules of 

the Data Management Layer 
22 Idra provides a unique access point to search and discover datasets managed by heterogeneous sources. It uniforms 

representation of the metadata of collected datasets according to DCAT-AP and provides a set of RESTful APIs to be used 

by third party applications. More details are available at https://github.com/OPSILab/Idra 



 

 
 
 

 

© URBANAGE GA no: 101004590  29	
 

D3.1 Data Manager Layer. Initial 

CKAN, Socrata, etc.). Data Gateway works as a unique access point to search and discover open datasets. To 

this aim, it harmonises the metadata for datasets provided also by external platform according to DCAT-AP 

format [14]. It provides a collection of RESTful APIs to interact with third-party applications and other 

URBANAGE components. Moreover, it is also able to federate generic open data portals that don't expose APIs 

by using web scraping functionality23. The Data Gateway offers a user interface, that will be exposed through 

the general URBANAGE UI. This user interface provides both administrative functionalities useful for example 

to federate open data portals and also end-user functionalities to create a graphical and reusable visualization 

of open data. 

 

The Data Repositories Federator (based on Presto24) allows to perform SQL queries against heterogeneous 

data repositories, both internally within the URBANAGE platform (i.e. URBANAGE Data Lake) and externally, 

towards data repositories owned by third parties (such us legacy data repositories of the city). The Data 

Repository Federator interacts with a data repository through embedded connectors; since the Data 

Repository Federator is based on Presto, it includes connectors to support different technologies, e.g. 

Cassandra, Hive, Kafka, MongoDB, MySQL, PostgreSQL, etc. Indeed, it allows to interact with different 

databases or even proprietary data stores combining potentially in a single query data coming from multiple 

sources and diverse technologies, working as a distributed SQL query engine for running interactive analytic 

queries against data sources of big sizes.  

 

The Data Repository Federator is also connected to the Datamodel Mapper, a tool able to translate structured 

input data into NGSI compliant entities, that are then stored into the URBANAGE Data Lake for further analysis; 

currently, one of the main candidates for the realisation of the Big Data Analytic Storage is Min.io25. The 

Datamodel Mapper is able to convert several file types (e.g. JSON, GeoJSON, CSV) according to different data 

models. This tool uses a mapping file, which is a well-formed JSON file, in order to know how to map each 

source field of the parsed row/object in the destination fields. The file in input can contain either rows, JSON 

objects or GeoJSON features, each of them representing an object to be mapped to an NGSI entity, according 

to the selected data model passed to the tool as an input parameter.  

 

Leveraging the Workflow Management, it is possible to schedule recurrent and pre-configured query against 

federated data repositories to collect and store updated data. The Workflow Management is based on Apache 

Airflow26. The Workflow Management allows to schedule a workflow by time or events, and it offers an 

 
23 By defining a configuration file named "Sitemap", Idra is instructed on how to navigate the portal and collect the needed 

information, mapping the metadata in the DCAT-AP format. Idra also offers a plugin for the Chrome browser to facilitate 

the definition of the Sitemap. More information is available on the dedicated section of Idra user manual - 

https://idra.readthedocs.io/en/latest/admin/scraping/ 
24 Presto is a distributed SQL query engine able to perform queries over multiple heterogeneous data sources. More 

details are available at https://prestodb.io/docs/current/index.html 
25 An open-source tool offering object storage capabilities compatible with S3 (Simple Storage Service) APIs 

https://min.io/ 
26 An open-source tool written in Python that uses this language to define workflows following, behind the woods, the 

principle called “workflow as a code” https://airflow.apache.org/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  30	
 

D3.1 Data Manager Layer. Initial 

administrative user interface to monitor workflows statutes, outputs, configuration parameters and logs. 

Airflow offers a wide range of integration options and protocols to interact with. 

 

The Context Broker (based on the Orion Context Broker27) manages the life cycle of context information and 

the dispatching of real-time information following a publish-subscribe approach. The context information is 

represented in the form of NGSI-LD entities. The Context Broker receives data from the IoT Agents and from 

the URBANAGE Connectors for IT Platforms. 

• The IoT Agents are FIWARE Generic Enablers that facilitate the connection of IoT devices to gather 
context information from them; they can also trigger actuations in response to context updates. The 

IoT Agents support different protocols, such as Lightweight M2M28, UltraLight29, Sigfox,30 and 

LoRaWAN31. 

• URBANAGE Connectors for IT Platforms are more complex components mainly devoted to allowing a 

bidirectional communication between the URBANAGE Platform and legacy IT systems. They consist of 

a tailored implementation of a set of specifications that exposes a uniform interface enabling he 

connection to the URBANAGE Platform (Section 4.1.1 provides more details on the URBANAGE 

Connectors for IT Platforms).  

 

Finally, the Context Broker is connected to the Context Information Data Bridge (CIDB) component (based on 

FIWARE Cygnus32); this component acts as a bridge between the Context Broker and the URBANAGE Data Lake. 

CIDB persists the NGSI-LD entities managed by the Context Broker creating a historical view of such 

information and of their related attributes. CIDB supports different technologies and tools. Among them HDFS, 

MySQL, MongoDB, Kafka, PostgreSQL, Carto (a database specialized in geolocated data), Elasticsearch (a 

distributed search and analytics engine). 

 

To retrieve the NGSI-LD entities to be stored, CIDB leverages the publish-subscribe capabilities of the Context 

Broker. To this aim, a subscription must be created on the Context Broker; the subscription must specify the 

entities to be notified to CIDB when an update occurs and the attributes of interest. So, the notified attributes 

of the NGSI-LD entities are persisted. 

 

CIDB plays the role of a connector between Context Broker and different kinds of tool. Indeed, it is the bridge 

between the Context broker and the URBANAGE Data Lake, but also with the Message Bus.  

 

 
27 The Orion Context Broker is one of the building blocks promoted by the CEF Programme and the main Generic Enabler 

of the FIWARE platform. It offers an implementation of both NGSI-LD and NGSIv2 APIs. More details are available 

at https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Orion+Context+Broker and at 

https://github.com/FIWARE/context.Orion-LD 
28 https://fiware-iotagent-lwm2m.readthedocs.io/en/latest/ 
29 https://fiware-iotagent-ul.readthedocs.io/en/latest/usermanual/index.html 
30 https://iotagent-sigfox.readthedocs.io/en/latest/ 
31 https://fiware-lorawan.readthedocs.io/en/latest/ 
32 A connector in charge of persisting/transmitting context information to a configured storage/tool. In turn, Cygnus is a 

customisation of Apache Flume https://fiware-cygnus.readthedocs.io/en/latest/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  31	
 

D3.1 Data Manager Layer. Initial 

Table 2 briefly summarises the baseline technical tools of the Data Management Layer. 

Table 2: Data Management Layer baseline technological tools33 

Name Brief Description Role License 

Idra It is as unique point of access to search and discover 

datasets from URBANAGE platform and form external 

Open Data Management Systems. 

Data Gateway AGPL 3.0 

Presto It is a distributed SQL query engine for running 

interactive queries against data sources from 

heterogeneous data repositories. 

Data Repository 
Federator 

Apache 2.0 

Apache 
Airflow34 

It is a workflow orchestrator that let to schedule pipeline 

by time or events leveraging a wide range of integration 

options providing a UI to monitor and check executions. 

Workflow 
Management 

Apache 2.0 

Data 
Model 
Mapper 

It is a tool able to map and translate structured input 

data into a NGSI entities according a selected data 

model. 

Data Model 
Mapper 

AGPL 3.0 

Orion 
Context 
Broker 

It manages the life cycle of context information 

dispatching real-time information received from IoT 

Agents following a publish-subscribe approach. 

Context Broker AGPL 3.0 
 

IoT Agents IoT Agents support different protocols (such as 

Lightweight M2M, UltraLight, Sigfox and LoRaWAN) to 

gather context information provided by IoT devices 

through IoT connectors. 

IoT connectors AGPL 3.0 

Cygnus It persists NGSI-LD entities managed by the Context 

Broker creating an historical view of context information 

and of their related attributes. 

Context 
Information 
Data Bridge 

AGPL 3.0 
 

  

 
33 For development purposes of the URBANAGE Platform, the project established a CI/CD (Continuous Integration and 

Deployment) process, that includes among the tools to be used, a code repository (i.e. GitLab). The code repository 

collects the prototypes of the main components (e.g. baseline tools, libraries, datasets, etc.) constituting the Data 

Management Layer and their future developments. The deliverable "D5.2 Initial Platform Prototype" provides details 

about the CI/CD process and the code repository. 
34 Even if the Workflow Management (the components based on Airflow) is not part of the DML, it is important to report 

also its relative baseline tool to provide a more complete view. 



 

 
 
 

 

© URBANAGE GA no: 101004590  32	
 

D3.1 Data Manager Layer. Initial 

4.1.1 URBANAGE Connector for IT Platform 
The URBANAGE Connector for IT Platforms is composed of two parts: one part on the side of the URBANAGE 

Platform and another one on the side of the connected IT Platform. The latter, from a conceptual point of 

view, is composed of different logic layers: 

• Authentication and Authorisation layer protects the connector against external malicious attacks and 

avoids leakages of data. 
• APIs layer implements a set of REST APIs to allow the concrete interaction between the Data 

Management Layer and the connector. APIs provides a uniform set of methods, offering a common 

way to access the services and the data exposed by the connected IT platform. The concrete 

implementation of these APIs depends on the specific integration needs required for the underlying 

IT Platform. The APIs of the URBANAGE Connector for IT Platform (both on URBANAGE and IT Platform 

sides) follow the APIs of IDS (International Data Spaces) connector provided by the TRUE (TRUsted 

Engineering) Connector35. This implementation uses both HTTP and HTTPS protocols and exposes 

three endpoints: 

- /proxy to receive data incoming request 
- /data to receive data from a sender 
- /about/version returns business logic information 

Detailed information is available on TRUE Connector official documentation. 

• Semantic Adaptation layer performs the “translation” of the exchanged data according to the data 

models managed by the URBANAGE Platform (i.e. NGSI-LD based). 
• Integration Logic layer performs the procedures needed to allow the correct integration of the 

connector with the specific (legacy) IT Platform. The procedures and operations needed to integrate 

the connector with the specific IT Platform will depend on the policies, technical characteristics, 

restrictions, requirements, etc. of the latter. The Integration Logic layer leverages other two logical 

layers that allow it to access the data and to interact with the services of the specific IT Platform (the 

Data Link and the Service Link layers). The Integration Logic layer will allow performing anonymisation 

of the data if needed. 

• Data Link layer enables the Integration Logic layer to access the data managed by the specific IT 

Platform; the way the Data link layer will accesses data will depend on the policies, technical 

restrictions, requirement, etc. of the specific IT Platform. 
• Service Link layer enables the Integration Logic layer to interact with services exposed by the specific 

IT Platform; the way the Data Link layer interact with those services will depend on the policies, 

technical restrictions, requirement, etc. of the specific IT Platform. 
 

Figure 14 depicts the general diagram of a connector for IT platform, highlighting its main components.  

 
35 https://github.com/Engineering-Research-and-Development/true-connector 



 

 
 
 

 

© URBANAGE GA no: 101004590  33	
 

D3.1 Data Manager Layer. Initial 

Figure 14: Schematic representation of Connector for IT Platform 

 
Suggested tools 

This section briefly reports a list of suggested tools for the implementation of a generic URBANAGE Connector 

of IT Platform. 

Concerning the Authentication and Authorisation capabilities, the recommended tool is Keycloak36, also, in 

continuity with the overall technical approach of the URBANAGE Platform (detailed in the deliverable “D5.1 

System Architecture & Implementation Plan”). Keycloak is an open-source Identity and Access management 

tool that supports standard protocols, such as Oauth237.  

Semantic adaptation can be supported by a tool already included in the DML. The Datamodel Mapper can be 

adopted also in this case to translate data coming from the IT Platform. 

Finally, the Integration Logic, the Data Link and the Service Link are strictly related to the technical 

characteristics of the IT Platform (e.g. Exposed APIs, databases, framework, programming languages, etc.) and 

in many cases they should be implemented from scratch. However, some tools can facilitate this process; tools 

and frameworks that support ETL (Extract Transform Load) operations can offer a significant advantage for the 

implementation of these three layers of a connector. 

As for the Authentication and Authorisation layer, in continuity with the overall technical approach of the 

URBANAGE Platform, the suggested tool for the implementation of the Integration Logic, the Data Link and 

the Service Link is Airflow. In the case of anonymisation needs, tools such as Amnesia38 can be usedFigure 15); 

Amnesia is a tool promoted by Open AIRE39 that offers a flexible solution for the anonymization process and 

leverages algorithms that take advantage of modern hardware architectures based on multiple cores. 

 
36 https://www.keycloak.org/ 
37 https://oauth.net/2/ 
38 https://amnesia.openaire.eu/index.html 
39 https://www.openaire.eu/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  34	
 

D3.1 Data Manager Layer. Initial 

Moreover, Amnesia simplifies the definition of anonymization and guides the users by its user interface to the 

outcomes of the anonymization process. 

Figure 15: User interface of Amnesia 

 

4.2 Data collection, harmonisation and aggregation processes 
This section provides a high-level overview of the processes applied by the DML to manage both static and 

real-time data (collection, harmonisation, aggregation and storage). 

4.2.1 Collection and harmonisation of static data 
This section describes the high-level process for the collection and harmonisation of static data coming from 

generic data repositories; the sample scenario described here considers two data repositories.  

 

The Workflow Management component initiates the flow. It triggers the Datamodel Mapper providing 

different information:  

1) the query to be performed against the Data Repository Federator 

2) the NGSI-LD data model to be followed for the harmonisation of the data fetched by the Data 

Repository Federator, 

3) the mapping instructions to translate the fetched data into NGSI-LD entities compliant with the 

indicated data model. 

  

Then the Datamodel Mapper interacts with the Data Repository Federator to fetch the data; the latter 

1) prepares the queries to be executed on the two federated data repositories 

2) perform the two queries against them, getting in return the corresponding data.  

  



 

 
 
 

 

© URBANAGE GA no: 101004590  35	
 

D3.1 Data Manager Layer. Initial 

Once the Data Repositories Federator obtains the whole sets of data, it aggregates and integrates them 

according to the received instructions. 

  

Then the data is provided to the Datamodel Mapper, which performs the harmonisation of the received data 

according to the mapping instructions and the NGSI-LD data model.  

  

Once the harmonisation is completed, the Datamodel Mapper stores the harmonised data (the NGSI-LD 

entities) on the URBANAGE Data Lake. 

Figure 16: Sequence diagram - Collection and harmonisation of static data 

 

4.2.2 Collection and harmonisation of real-time data 
This section describes the high-level process for the collection and harmonisation of real-time data coming 

from a generic sensor. 

The flow is initiated by the Sensor (e.g. a physical device) that pushes an update to the corresponding IoT 

Agent (a software component associated with the sensor acting as a bridge between it and the rest of the 

DML). The IoT Agent treat the received data and create a corresponding NGSI-LD entity representing it; this 

step corresponds to the harmonisation process. The specific NGSI-LD is created according to the specific type 

of data and is configured during the set-up of the IoT Agent. 

Once ready, the IoT Agent sends the NGSI-LD entity containing the data provided by the sensors to the Context 

Broker that updates the managed context information.  

Once the Context Broker receives the data from the IoT Agent, two situations can occur. 



 

 
 
 

 

© URBANAGE GA no: 101004590  36	
 

D3.1 Data Manager Layer. Initial 

1) The data present a new sensor (with the corresponding measure); for instance, a temperature sensor. 

In this case, the Context Broker instantiates the corresponding entities among the managed context 

information 

2) The data represent an update associated with a sensor; for instance, the temperature detected by the 

sensor. In this case, the Context Broker updates the corresponding entity already existing among the 

managed content information. 

 

In both cases, the updates (instantiation of a new entity or its update) are notified to the CIDB (Context 

Information Data Bridge) that is in charge of persisting them into the URBANAGE Data Lake, allowing so the 

collection of historical data that can be used for further analysis. 

Figure 17: Sequence diagram - Collection and harmonisation of real-time data 

 

4.2.3 Data Aggregation and Integration 
As described in section 4.2.1, the process for the collection and harmonisation of static data foresees also the 

possibility to aggregate data coming from scattered (static) data sources (e.g. databases). Static data retrieved 

by the Data Repository Federator can be aggregated at the time of collection and stored into the URBANAGE 

Data Lake already aggregated (after being harmonised by the Datamodel Mapper). However, if it is necessary 

to perform further data aggregation, it is possible to leverage the Workflow Manager to perform this 

operation. 

As reported in section 4.1, the Workflow Manager is based on Apache Airflow; this tool can execute Python 

scripts. So, it is possible to programmatically design and code the needed steps to perform the further data 

aggregation operation of the information managed within the URBANAGE Data Lake, combining them also 

with the Context Information managed by the Context Broker. Since Airflow offers the possibility to connect 

with S3 APIs, it could directly interact with the URBANAGE Data Lake; alternatively, the Data Repository 

Federator can act as an interoperability layer between the Workflow Manager and the URBANAGE Data Lake. 

Figure 18 briefly depicts this process. 



 

 
 
 

 

© URBANAGE GA no: 101004590  37	
 

D3.1 Data Manager Layer. Initial 

Figure 18: Sequence diagram – Sample data aggregation process 

 
 

Since the purpose of data aggregation is to produce datasets ready to be analysed or visualised, the specific 

data aggregation operations that will be performed by URBANAGE Platform (e.g. through the Workflow 

Manager or by the usage of the Data Repository Federator) will rely on the specific use cases to be 

implemented and on the available datasets. Deliverable D5.2 Initial Platform Prototypes provide more 

information about the approaches for data integration. 

4.3  Overview of Data Access APIs 
This section provides an overview of the APIs exposed by the Data Management Layer to allow the other 

components of the URBANAGE architecture to access the managed data. The main components of the Data 

management Layer involved in interaction with the other parts of the URBANAGE architecture are the Data 

Gateway, the Data Repository Federator, the Context Broker, and Context Information Data Bridge. 

 

Data Gateway 

Table 3 provides an overview of the more relevant APIs exposed by the Data Gateway. In particular, this 

component (based on Idra) provides different APIs typologies: end-user APIs (with “client” path), federation 

APIs (with “odf” path) and administration APIs (with “administration” path). All resources/URIs have the 

following root path: {IdraApiRoot}/Idra/api/v1/. For more information, please refer to the Idra official 

documentation [15].  



 

 
 
 

 

© URBANAGE GA no: 101004590  38	
 

D3.1 Data Manager Layer. Initial 

Table 3: APIs exposed by Data Gateway 

Resource 

Name 

Resource URI HTTP 
Method 

Description 

Datasets Search /odf/odms/search POST This API is in charge of performing the federated 
search on all the dataset metadata belonging to 
federated ODMS catalogues. 

Datasets 
Summary 

/odf/odms/datasets/info 

  

GET This API is in charge of retrieving the summary 
list of all available datasets providing the 
identifiers and the release Date and update 
Date. 

Retrieve Single 
Dataset 

/odf/odms/datasets/{datasetID} GET This API is in charge of retrieving the dataset 
identified by the requested datasetID. 

End User 
Catalogues 
Resources 

/client/catalogues GET This API is in charge of retrieving the metadata 
of the federated ODMS catalogues. 

Single 
Catalogue APIs 

/client/catalogues/{nodeId} GET This API is in charge of retrieving a specific 
federated ODMS catalogue by its nodeId. 

Catalogues Info /client/cataloguesInfo GET This API is in charge of retrieving a subset of the 
metadata of the federated ODMS catalogues 
that allow the search operation; specifically, the 
following metadata is retrieved for each 
catalogue: id, the federation level and the 
name. 

Metadata 
Search 

/client/search GET This API is in charge of performing the federated 
search on all the dataset metadata belonging to 
federated ODMS catalogues. It is possible to 
specify by filters some parameters about 
search: if search is multilingual, or if search is 
live or cached etc. 

Catalogues 
Resources 

/administration/catalogues GET This API is in charge of retrieving the details of 
all federated ODMS catalogues. 

POST This API is in charge of adding a new ODMS 
catalogue to the federation.  

Single 
Catalogue APIs 

/administration/catalogues 

/{nodeId} 

GET This API is in charge of retrieving a specific 
federated ODMS catalogue by its nodeId. 

PUT This API is in charge of updating a specific 
federated ODMS catalogue by its nodeId. 

DELETE This API is in charge of deleting a specific 
federated ODMS catalogue by its nodeId. 

Synchronize 
Catalogue 

/administration/catalogues 

/{nodeId}/synchronize 

POST This API is in charge of forcing the 
synchronization of the Catalogue identified by 
the nodeId parameter. 

  



 

 
 
 

 

© URBANAGE GA no: 101004590  39	
 

D3.1 Data Manager Layer. Initial 

Data Repository Federator 

Table 4 provides an overview of the more relevant APIs exposed by Data Repository Federator. This 

component is based on Presto and its APIs can be grouped in two categories: Client APIs (to submit queries) 

and Worker APIs (to coordinate the query execution among different nodes). For more information, please 

refer to the official documentation of Presto [16]. 

Table 4: APIs exposed by Data Repository Federator 

Resource Name Resource URI HTTP 
Method 

Description 

Statement 

(Client APIs) 

/v1/statement POST This API is in charge of executing the query 
included in the POST body; it returns a JSON 
document containing the query results. If 
there are more results, the JSON document 
will contain a nextUri URL attribute. 

GET This API is in charge of providing, by using 
nextUri attribute, the next batch of query 
results. 

DELETE This API is in charge of terminating a running 
query by using nextUri attribute. 

Control Plane 

(Worker APIs) 

/v1/task/{taskId} POST This API is in charge of executing the query 
fragment specified in the POST body. The 
request optionally includes a set of initial splits 
to process. 

/v1/task/{taskId}/status GET This API is in charge of retrieving the 
TaskStatus JSON document describing the 
current execution status. 

/v1/task/{taskId} DELETE This API is in charge of deleting a finished task 
or cancels a task in-progress. 

 

Context Broker 

The Context Broker provides a consistent way to manage context information and to execute different 

operations like subscriptions, notifications, data gathering, etc. All resource URIs have the following root path: 

{apiRoot}/{apiVersion}/. The Context Broker implements the NGSI-LD APIs, already introduced in section 3.1.2. 

More information about ETSI NGSI-LD APIs is available in the dedicated web page [17]. 

 

Context Information Data Bridge 

This component is based on Cygnus. Table 4 provides an overview of the more relevant APIs exposed by 

Cygnus. Cygnus is a connector acting as a bridge between the Context Broker and other tools (such as for 

persisting context information and in doing so creating an historical view of such data). Cygnus is based on 

Apache Flume 40. It supports different third-party storages such as HDFS, MySQL, CKAN, MongoDB etc. Further 

details about exposed APIs are available in the official documentation [18].  

 
40 Apache Flume - https://flume.apache.org/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  40	
 

D3.1 Data Manager Layer. Initial 

Table 4: APIs exposed by the Context Information Data Bridge 

Resource 

Name 

Resource URI HTTP 
Method 

Description 

Subscription /v1/subscriptions&ngsi_version=2 GET This API is in charge of retrieving the 
existent subscriptions, given the NGSI 
version (2 in this case). If the query 
parameter “subscription_id” is provided, 
this API retrieve only the subscription 
corresponding to the provided 
subscription id. 

/v1/subscriptions&ngsi_version=2 POST This API is in charge of creating a new 
subscription. 

/v1/subscriptions?ngsi_version=2 

&subscription_id={subscriptionId} 

DELETE This API is in charge of deleting the 
subscription identified by the query 
parameter “subscription_id”. 

 

  



 

 
 
 

 

© URBANAGE GA no: 101004590  41	
 

D3.1 Data Manager Layer. Initial 

5  Conclusion 

This document describes the initial design of the Data Management Layer (DML) of the URBANAGE Platform, 

including the main interactions with other relevant components of the URBANAGE Platform itself, from the 

perspective of the DML. Within the URBANAGE Platform, the DML acts a bridge between the high-level 

capabilities provided by URBANAGE (e.g. Big Data Analytics, Artificial Intelligence, the Digital Twin) and the 

data sources needed to feed them. 

The DML allows to collect data from heterogenous data sources, such as sensors, repositories (e.g. databases), 

(legacy) IT Systems that can expose diverse APIs and offer data in different formats. Under this perspective, 

the DML offers the capabilities needed to collect, harmonise and aggregate data, making it ready to be 

exploited by the other layers of the URBANAGE Platform. The overall processes to collect and harmonise and 

aggregate data are also reported and described in this document. 

To ensure data interoperability, the DML makes use of a common data format (to properly structure the 

collected information) and ontologies (to model and establish relations among the information itself); the 

adoption of NGSI-LD and SAREF ontologies and their extensions (that can be further extended) offers the 

opportunity to follow consolidated and well-known standards, increasing the replicability and interoperability 

chances.  

  



 

 
 
 

 

© URBANAGE GA no: 101004590  42	
 

D3.1 Data Manager Layer. Initial 

6 References 

 

[1]  ECMA, «ECMAScript Language Specification Standard ECMA-262 3rd Edition,» Geneva, 1999. 

[2]  «JSON for Linking Data,» [Online]. Available: https://json-ld.org/. 

[3]  W3C, «JSON-LD 1.1 A JSON-based Serialization for Linked Data - W3C Recommendation 16 July 2020,» 

[Online]. Available: https://www.w3.org/TR/json-ld/. 

[4]  Open Mobile Alliance, «NGSI Context Management Version 1.0,» 2012. 

[5]  ETSI, «ETSI GS CIM 009 V1.5.1 Context Information Management (CIM); NGSI-LD API,» 2021-11. 

[6]  W3C, «Resource Description Framework (RDF),» [Online]. Available: https://www.w3.org/RDF/. 

[7]  W3C, «RDF Schema 1.1,» [Online]. Available: https://www.w3.org/TR/rdf-schema/. 

[8]  W3C, «Semantic Sensor Network Ontology,» [Online]. Available: https://www.w3.org/TR/vocab-ssn/. 

[9]  W3C, «SOSA Ontology,» [Online]. Available: https://www.w3.org/2015/spatial/wiki/SOSA_Ontology. 

[10]  ETSI, «ETSI TS 103 264 V3.1.1 SmartM2M; Smart Applications; Reference Ontology and oneM2M 

Mapping,» 2020-02. 

[11]  ESTI, «ETSI TS 103 410-3 SmartM2M; Extension to SAREF; Part 3: Building Domain,» 2020-05. 

[12]  ETSI, «SAREF4EHAW: an extension of SAREF for eHealth Ageing Well domain,» [Online]. Available: 

https://saref.etsi.org/saref4ehaw/v1.1.1/. 

[13]  Google, «GTFS Static Overview,» [Online]. Available: https://developers.google.com/transit/gtfs. 

[14]  «DCAT-AP 2.1.0,» [Online]. Available: https://joinup.ec.europa.eu/collection/semantic-interoperability-

community-semic/solution/dcat-application-profile-data-portals-europe/release/210. 

[15]  OPSILab - Engineering Ingegneria Informatica SpA, «Idra - Open Data Federation Platform,» [Online]. 

Available: https://idraopendata.docs.apiary.io/#. 

[16]  Presto, «Presto Documentation,» [Online]. Available: https://prestodb.io/docs/current/index.html. 

[17]  ETSI, «ETSI ISG CIM / NGSI-LD API,» [Online]. Available: 

https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/NGSI-LD/NGSI-

LD/raw/master/spec/updated/generated/full_api.json. 

[18]  FIWARE, «CYGNUS,» [Online]. Available: https://fiware-cygnus.readthedocs.io/en/latest/index.html. 

[19]  Open Geospatial Consortium, «CityGML,» [Online]. Available: https://www.ogc.org/standards/citygml. 

[20]  «IDRA - OPEN DATA FEDERATION PLATFORM,» [Online]. Available: 

https://idra.readthedocs.io/en/latest/. 

[21]  Open API Initiative, «OpenAPI Specification,» [Online]. Available: 

https://spec.openapis.org/oas/latest.html. 

[22]  Route2PA EU Project, «Datalets,» [Online]. Available: 

https://github.com/routetopa/spod/wiki/Datalets. 



 

 
 
 

 

© URBANAGE GA no: 101004590  43	
 

D3.1 Data Manager Layer. Initial 

[23]  SynchroniCity EU Project, «SynchroniCity - Data Model Mapper,» [Online]. Available: 

https://gitlab.com/synchronicity-iot/data-model-mapper/-/blob/master/README.md. 

[24]  FIWARE, «FIWARE-NGSI v2 Specification,» [Online]. Available: 

https://swagger.lab.fiware.org/?url=https://raw.githubusercontent.com/FIWARE/specifications/maste

r/OpenAPI/ngsiv2/ngsiv2-openapi.json. 

[25]  FIWARE, «IoT Agents,» [Online]. Available: https://github.com/FIWARE/tutorials.IoT-Agent. 

[26]  FIWARE, «IOT AGENT FOR JSON,» [Online]. Available: https://fiware-iotagent-

json.readthedocs.io/en/latest/. 

[27]  FIWARE, «IOT AGENT FOR OMA LIGHTWEIGHT M2M,» [Online]. Available: https://fiware-iotagent-

lwm2m.readthedocs.io/en/latest. 

[28]  FIWARE, «IOT AGENT FOR ULTRALIGHT 2.0,» [Online]. Available: https://fiware-iotagent-

ul.readthedocs.io/en/latest/. 

[29]  FIWARE, «IOT AGENT FOR LORAWAN PROTOCOL,» [Online]. Available: https://fiware-

lorawan.readthedocs.io/en/latest/. 

[30]  «FIWARE TRUE CONNECTOR,» [Online]. Available: https://github.com/Engineering-Research-and-

Development/fiware-true-connector/blob/master/README.md . 

[31]  «Amnesia ReST API Structure,» [Online]. Available: https://github.com/dTsitsigkos/Amnesia#rest-api-

endpoints. 

[32]  Apache Airflow, «Apache Airflow Documentation,» [Online]. Available: 

https://airflow.apache.org/docs/apache-airflow/2.2.3/index.html. 

 

 

  



 

 
 
 

 

© URBANAGE GA no: 101004590  44	
 

D3.1 Data Manager Layer. Initial 

7 Annex 1 – Overview of Initial datasets from pilot sites 

This section provides an overview of the initial datasets identified by the three pilot sites of the project 

(Santander, Flanders and Helsinki) that potentially could be leveraged to feed the Data Management Layer 

and so the whole URBANAGE Platform. For each dataset, the following information is reported: the title, a 

short description, the distribution formats (e.g. CSV, JSON, etc.), the license (if this information is not available 

“-” is reported), and a link to a web page providing more details. The datasets here reported were identified 

during the process for the definition of the use cases. The datasets which will be actually imported into the 

Data Management Layer may differ from those here reported since they will depend on the evolution of the 

use case needs.



 

 
 
 

 

© URBANAGE GA no: 101004590  45	
 

D3.1 Data Manager Layer. Initial 

Santander pilot site 

Title Description Format License Link 

Stops location (ideally 

GIS based) 

Information from Network Bus stops 
deployed in the city of Santander and their 
geographical position 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.041 http://datos.santander.es/dataset/?id=paradas-
bus 

Taxi stops Location of cab stand signs located within the 
municipal territory of Santander. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=paradas-
taxis 

Parking spaces for 

people with reduced 

mobility  

Information related to the parking spaces 
enabled for people with reduced mobility or 
handicapped, and their geographical position. 

RDF 
HTML 
JSON 

N3 
XML 

CC BY 4.0 http://datos.santander.es/dataset/?id=plazas-pmr 

 
41 Attribution 4.0 International; a Creative Common license. https://creativecommons.org/licenses/by/4.0/deed.en 



 

 
 
 

 

© URBANAGE GA no: 101004590  46	
 

D3.1 Data Manager Layer. Initial 

TURTLE 
CSV 

ATOM 
JSONLD 

Induction loop data Measurements made by the magnetic loops 
used by the Municipal Traffic Control Center 
to regulate traffic and traffic light 
programming. Real Time update provided 
each minute. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=datos-
trafico 

Location of the 

magnetic loops 

Location of the magnetic loops used by the 
Control Center Municipal Traffic to regulate 
traffic and traffic lights programming. 

SHP CC BY 4.0 http://datos.santander.es/dataset/?id=datos-
trafico 

Induction loop  

HISTORICAL data 

Historical data from the last seven days of 
measurements carried out by the magnetic 
loops. 

CSV CC BY 4.0 http://datos.santander.es/dataset/?id=historico-
semanal-de-mediciones-de-trafico 

Santander Cultural 

Agenda 

Information on the Cultural events 
programmed within the Municipality of 
Santander. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=agenda-
cultural 



 

 
 
 

 

© URBANAGE GA no: 101004590  47	
 

D3.1 Data Manager Layer. Initial 

Points of Interest 

Santander City 

Points of Interest Santander City (e.g. 
museums, theatres, monuments, beaches, 
parks, etc.). 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=puntos-de-
interes 

Meteorological data Real time measurements from different 
sensors located in the city of Santander 
related to the environment, light, noise, 
temperature, etc. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=sensores-
ambientales 

Movil 

sensors_environmental 

measurements 

Real time information of the environmental 
measurements made by the sensors 
equipped in the Public Transport Vehicles, 
and maintenance of the city used by the 
Santander City Council for its daily 
management. The data is provided by Orion 
Context Broker, from the Fiware platform. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/resource/?ds=sensores-
moviles 



 

 
 
 

 

© URBANAGE GA no: 101004590  48	
 

D3.1 Data Manager Layer. Initial 

Calendar of Santander 

Public Holidays 

Calendar of Holidays defined in the 
Municipality of Santander. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=calendario-
laboral 

Shops dedicated to 

retail sales 

Information about shops located in the 
Municipality of Santander mainly dedicated 
to retail sales. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=comercios 

Cinemas in the city of 

Santander 

Catalogue of existing cinemas in the city of 
Santander. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=cines 



 

 
 
 

 

© URBANAGE GA no: 101004590  49	
 

D3.1 Data Manager Layer. Initial 

Museums in the city of 

Santander 

The list of museums available in the city of 
Santander. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=museos 

Cultural galleries in the 

city of Santander 

The list of the cultural galleries available in 
the city of Santander. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=galerias-
culturales 
 

Santander Gardens Geographical representation of the Gardens 
located within the Municipality of Santander. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=jardines 



 

 
 
 

 

© URBANAGE GA no: 101004590  50	
 

D3.1 Data Manager Layer. Initial 

Santander Parks Geographic representation of the parks 
located within the municipality of Santander. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=parques 

Municipal Buildings Inventory of Municipal Buildings in 
geographic format. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

WKT 

CC BY 4.0 http://datos.santander.es/dataset/?id=edificios 
 

Building Permit 

applications 

Building Permit applications made through 
the General Registry of the Santander City 
Council. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=solicitudes-
licencias-obra 



 

 
 
 

 

© URBANAGE GA no: 101004590  51	
 

D3.1 Data Manager Layer. Initial 

Road network of the 

Municipality of 

Santander 

Geographical data relating to the road 
network of the Municipality of Santander 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

SHP 

CC BY 4.0 http://datos.santander.es/dataset/?id=callejero 

Waste Containers Information about the waste containers 
operating in the Municipality of Santander 
such as position, capacity, and even 
measurements of the built-in sensor. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=residuos 

Bike lane network Bike lane sections spread over municipality of 
Santander 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=carril-bici 
 



 

 
 
 

 

© URBANAGE GA no: 101004590  52	
 

D3.1 Data Manager Layer. Initial 

Bike sharing facilities 

occupancy 

Real Time update Stations existing municipal 
bicycle rental. The status of rental bike 
stations, number of existing and free anchors. 

RDF 
HTML 
JSON 

N3 
XML 

TURTLE 
CSV 

ATOM 
JSONLD 

CC BY 4.0 http://datos.santander.es/dataset/?id=estaciones-
bicicletas 
 

  



 

 
 
 

 

© URBANAGE GA no: 101004590  53	
 

D3.1 Data Manager Layer. Initial 

Flanders pilot site 

Title Description Format License Link 

GRB 2D Base layer Geographical and characteristic information 
of buildings, plots, roads and their layout, 
waterways, railways and the road network. 

Shape - https://www.geopu nt.be/catalogus/dat 
asetfolder/7c82305 5-7bbf-4d62-
b55ef85c30d53162 

Digital height model 

Flanders (up to 1 

meter) 

Digital Terrain Model (DTM) of the ground 
level in grid format with a ground resolution 
of 1 meter. 

WMS - http://www.geopu nt.be/catalogus/dat 
asetfolder/f52b1a1 3-86bc-4b64-8256- 
88cc0d1a8735 

Orthofoto high scale 

(10cm) 

Large-scale orthophoto mosaic (ground 
resolution: 10 cm) of the digital aerial images 
obtained simultaneously with the LiDAR 
height data. 

WMS  https://www.geopu nt.be/catalogus/dat 
asetfolder/dbbeddd 4-0452-4413-
9f2afa47a4f98e55 

MAGDA Services 

 

National register, information about age and 
family composition 

- - https://www.ibz.rrn .fgov.be/nl/rijksregi ster/ 

Loop-based traffic 

data (1-minute delay) 

This data is provided by the inductive 
detection loops, mainly on highways in 
Flanders. The data controllers are 
Agentschap Wegen en Verkeer (Roads and 
Traffic Agency) and Vlaams Verkeerscentrum 
(Flemish Traffic Centre). 
The traffic data contained are the number of 
vehicles and the average speeds, divided in 5 

XML CC BY 4.0 https://opendata.vlaanderen.be/dataset/meten-
in-vlaanderen-minuutwaarden-verkeersmetingen 



 

 
 
 

 

© URBANAGE GA no: 101004590  54	
 

D3.1 Data Manager Layer. Initial 

vehicle classes, aggregated per minute and 
the location of the measurement points. 

Air quality - HQ 

sensors (multiple 

elements) 

Information about ambient air quality CSV CC BY 4.0 https://www.irceline.be/en/documentation/open-
data 

Luftdaten42 - air 

quality sensors 

Environmental data collected by sensors 
(sensor location, PM10, PM2.5, humidity, 
temperature, noise). 

CSV Open 
Database 

https://archive.sensor.community/ 

  

 
42 Luftdaten (Now Sensor.Community) is a citizen science initiative to measure air quality. the initiative is mainly active in Europe and generates a continuously updated air quality 

map from the data transmitted by the contributors. - https://sensor.community 



 

 
 
 

 

© URBANAGE GA no: 101004590  55	
 

D3.1 Data Manager Layer. Initial 

Helsinki pilot site 

Title Description Format License Link 

3D model of 

Helsinki 

A semantic city information model and a 
visually high-quality reality mesh model 

GML CC BY 
4.0 

https://hri.fi/data/en_GB/dataset/helsingin-3d-
kaupunkimalli/resource/577f4286-7162-42e9-8ffe-
52632228569e?inner_span=True 

Helsinki Energy and 

Climate Atlas 

Heating, electricity and water 
consumption data for 2015, 2016, 2017 
AND 2018 
 

XLSX CC BY 
4.0 

https://hri.fi/data/en_GB/dataset/helsingin-3d-
kaupunkimalli/resource/48afc399-9d3c-4976-8375-
daf5863ad7af 

Real-time 
swimming water 
temperature in 
Helsinki 

swimming water temperature detected 
using sensors, in Helsinki. 

JSON 
CSV 

CC BY 
4.0 

https://hri.fi/data/en_GB/dataset/veden-reaaliaikainen-
lampotila-helsingin-uimarannoilla 

Up-to-date LAM43 

measurement data 

Measurement data for LAM stations. 
Amount of traffic in each direction for 
each LAM station, and measured average 
speed in both directions. 
The information is updated almost in real 
time, but the outgoing message is cached 
for one minute. More info at 
https://www.digitraffic.fi/tieliikenne/ 

JSON CC BY 
4.0 

https://tie.digitraffic.fi/api/v1/data/tms-data 

Park & Ride parking Information about parking spaces in 
Helsinki 

JSON GeoJSON  https://p.hsl.fi/api/v1/facilities.json 

 
43 LAM: Liikenteen Automaattinen Mittaus (Automatic Traffic Measurement) 



 

 
 
 

 

© URBANAGE GA no: 101004590  56	
 

D3.1 Data Manager Layer. Initial 

Public transport 

stops 

Location of public transport stops GraphQL JSON CC BY 
4.0 

https://digitransit.fi/en/developers/apis/1-routing-
api/stops/ 

Public transport 

statistics 

 

Helsinki region transport passengers by 
station 

CSV 
KML 

ESRI Shapefile 
GeoJSON 

CC BY 
4.0 

 

https://hri.fi/data/en_GB/dataset/hsl-n-nousijamaarat-
pysakeittain 

City bikes 

 

Location of bike rental stations and bike 
availability 

XML 
GraphQL JSON 

CC BY 
4.0 

 

https://api.digitransit.fi/routing/v1/routers/hsl/bike_rental 

Cyclist information 

 

The number of cyclists in Helsinki, starting 
from the beginning of 2014. This dataset is 
updated every 6 months. 

CSV CC BY 
4.0 

 

https://hri.fi/data/en_GB/dataset/helsingin-
pyorailijamaarat 

Street network 

traffic stats 

 

The data set contains data on the volume, 
speed and vehicle distribution of motor 
vehicle traffic in Helsinki. 

CVS CC BY 
4.0 

 

https://hri.fi/data/dataset/liikennemaarat-helsingissa 

Street network 

accident stats 

Locations, severity and types of accidents 
in Helsinki since 2000. 

CVS CC BY 
4.0 

https://hri.fi/data/fi/dataset/liikenneonnettomuudet-
helsingissa 

Linked Events 

 

Categorized data on events and places 
from the City of Helsinki, including Helsinki 
Marketing, Helsinki Cultural Centres and 
the Helmet metropolitan area public 
libraries. 

JSON-LD CC BY 
4.0 

 

https://api.hel.fi/linkedevents/v1/ 

Public spaces 

 

Access to public spaces and other public 
resources. 

JSON - https://api.hel.fi/respa/v1/ 
 

Library card users 

 

Statistics of the Helsinki City Library for 
different years on Library Card users by sex 

Excel file CC BY 
4.0 

https://hri.fi/data/fi/dataset/helsingin-
kaupunginkirjastossa-kirjastokorttiaan-k-ytt-neet 



 

 
 
 

 

© URBANAGE GA no: 101004590  57	
 

D3.1 Data Manager Layer. Initial 

and age group. The time series starts from 
2007. 

City map services 

 

Orhomosaic, aerial photographs, city 
models, POI layer 

GML 
KML 

Excel file AutoCAD 
DXF 

GeoPackage 
MapInfo MIF 
MapInfo TAB 

Shape 

CC BY 
4.0 

 

https://kartta.hel.fi/?setlanguage=en# 
 

Helsinki 

metropolitan area 

service map 

Information on the service points and 
services offered by the cities of Helsinki. 

CSV 
JSON 

CC BY 
4.0 

https://hri.fi/data/en_GB/dataset/paakaupunkiseudun-
palvelukartan-rest-rajapinta 



 

 
 
 

 

© URBANAGE GA no: 101004590  58	
 

D3.1 Data Manager Layer. Initial 

8 Annex 2 – Main components of URBANAGE 
Platform interacting with the Data Management 
Layer 

This section briefly describes the main logical components of the URBANAGE Platform that interacts with the 
Data management Layer. 
 

• URBANAGE UI: this component represents the front-end of the entire URGANAGE Platform and 
integrates the UIs provided by the components of the platform itself. Its aim is to offer a unified and 
uniform view to the users. It also provides UIs for the management of various aspects of the system 
like user management, user account settings etc. User interfaces of the components of the Data 
Management Layer are exposed through the URGANABE UI (e.g. administration UI of the Data 
Gateway) 

• City Information Model: this component offers management capabilities for urban models following 
the CityGML [19] standard that contains semantically rich, hierarchically structured, multi-scale urban 
objects facilitating complex GIS modelling and analysis tasks, far beyond visualization. A connection 
between the City Information Model and the Context Information (managed by the Context broker) is 
foreseen. 

• Workflow Management: This component allows to build, execute, and monitor workflows for the 
orchestration of internal processes of the URBANAGE Platform. It allows to define and schedule 
workflows and to monitor their execution and offers a wide range of integration options to interact 
with different protocols/systems. It also provides a graphical user interface (GUI) that will be is part 
of the URBANAGE UI. The collection of static information coming from data repositories leverages the 
Workflow Management to schedule and automate collection processes. 

• Message Bus: This component offers a messaging system that assists the synchronous and 
asynchronous communication within the URBANAGE Platform. The Context Broker notifies real-time 
updates related to context information to the Message Bus (through the Context Information Data 
Bridge component), so to communicate to the AI Algorithms and simulation tools and to the Big Data 
Analytics component the needed information.  

• AI Algorithms and simulation tools: these components offer simulations and route planning 
capabilities making use of optimization modules based on multi-objective algorithms and ML/DL 
algorithms to achieve different descriptive, predictive and prescriptive functionalities. In addition to 
the information transmitted through the Message Bus, these components can access static 
information (made available through Data Repositories Federator) and the context information (made 
available through the Context Broker) 

• Big Data Analytics components: these components include the ones devoted to the storage of big 
data (i.e. the URBANAGE Data Lake) and to their analysis. In detail, the first provides a storage facility 



 

 
 
 

 

© URBANAGE GA no: 101004590  59	
 

D3.1 Data Manager Layer. Initial 

for the data collected and enables further analysis by the Big Data Analytics and AI components. The 
second offers the capabilities to analyse the data collected and stored, by leveraging various 
techniques like machine learning and data mining to deliver descriptive, predictive and prescriptive 
analytics. As for the AI algorithms and simulation tools, in addition to the information transmitted 
through the Message Bus, these components can access the static information (made available 
through Data Repositories Federator) and the context information (made available through the 
Context Broker). 

 
 
  



 

 
 
 

 

© URBANAGE GA no: 101004590  60	
 

D3.1 Data Manager Layer. Initial 

9 Annex 3 – Data Management Layer baseline tools 
This section provides more technical details about the baseline tools used and/or customized to build together 
the Data Management Layer. 
 
Apache Airflow 
Airflow is an open-source tool to programmatically author, schedule, and monitor workflows. It is one of the 
most robust platforms used by data engineers for orchestrating workflows or pipelines. This tool allows to 
easily visualize data pipelines’ dependencies, progress, logs, code, trigger tasks, and success status. Airflow 
provides an administrative user interface for easy visualization of running pipelines, monitoring their progress, 
and troubleshooting issues when needed. In Airflow, pipelines are configured as Python code. An Airflow 
pipeline is a Directed Acyclic Graphs (DAGs)44 of tasks. A task represents a node of a defined DAG that can use 
diverse operators to interact with a wide range of protocols/systems and integration options provided by 
Airflow. It can be connected with multiple data sources and can send messages/alerts via different protocols 
when a task has been completed or a task execution has been processed with errors. Apache Airflow is 
distributed, scalable and flexible, making it well suited to handle the orchestration of complex business logic. 
Its modular architecture is composed of diverse component’ types that interact with each other to orchestrate 
data pipelines as reported in Table 5.  

Table 5: Apache Airflow Architecture Components 

Component Name Component Description 

Web Server This is the administrative User Interface of Airflow, that can be used to get an 
overview of the overall health of different Directed Acyclic Graphs (DAG) and 
also help in visualizing different components and statuses of each DAG. The 
web server provides also capabilities to manage users, roles, and different 
configurations for the Airflow setup. The web server provides also a sets of REST 
APIs that can be used to perform various tasks like triggering DAGs or getting 
the status for each task instance, 

Scheduler This is the most important part of Airflow, that orchestrates various DAGs and 
their tasks, taking care of their interdependencies, limiting the number of runs 
of each DAG so that one DAG doesn’t overwhelm the entire system, and making 
it easy for users to schedule and run DAGs on Airflow. 

Executor Executors are the components that actually execute tasks. There are different 
types of executors that come with Airflow, such as Sequential Executor, Local 
Executor, Celery Executor and the Kubernetes Executor. An executor can be 
selected based on a specific use case needed. For example, a Celery Executor, 
based on python celery, is widely used to process asynchronous tasks while 
Sequential Executor is used only to run one task instance at a time (See Apache 
Airflow documentation for more details). 

 
44 A Directed Acyclic Graph (DAG) is the core concept of Airflow; it allows to collect Tasks together, organise their 
dependencies and relationships [20] 



 

 
 
 

 

© URBANAGE GA no: 101004590  61	
 

D3.1 Data Manager Layer. Initial 

Metadata Database Metadata Database stores metadata about DAGs, their runs and other 
configurations like users, roles and connections. This information, such as 
DAGs’ statuses and their runs, is visualized on web server UI and it is updated 
by the scheduler. Airflow supports a variety of database management systems 
(DBMS) for its metadata store. 

 

Figure 19: Airflow UI showing a DAG graphical representation 

 
 
Presto DB 
Presto DB is an open-source software released under the Apache License that works as high performance, 
distributed SQL query engine for big data. Presto has been designed to handle data warehousing and analytics: 
data analysis, aggregating large amounts of data and producing reports. Its main peculiarity consists in the 
capability of combining data from multiple sources with a single query. Its architecture allows users to query 
a variety of data sources and it offers connectors to data sources including files in Hadoop Distributed File 
System, Amazon S3, MySQL, PostgreSQL, Microsoft SQL Server, Amazon Redshift, Apache Kudu, Apache 

Phoenix, Apache Kafka, Apache Cassandra, MongoDB and Redis. Concerning architecture aspects there are 
two diverse types of servers in Presto: Coordinators and Workers (Table 6). 

Table 6: Presto server types 

Server Type Description 

Coordinator The server responsible for parsing statements, planning queries and managing Presto 
worker nodes. It is a mandatory server in Presto architecture that must have a 
coordinator. Coordinator communicates with workers and clients using REST APIs. 

Worker The server responsible for executing tasks and processing data. Workers communicate 
with other workers and the coordinator using REST APIs. 

 
Presto provides a web user interface for monitoring and managing queries (Figure 20). The UI offers a list of 
queries along with information like unique query ID, query text, query state, percentage completed, username 
and source from which this query originated. 
 
 
 
 



 

 
 
 

 

© URBANAGE GA no: 101004590  62	
 

D3.1 Data Manager Layer. Initial 

Figure 20: Presto user interface 

 
 

The currently running queries are at the top of the page, followed by the most recently completed or failed 
queries. Table 7 summarises the possible query states. 

Table 7: Presto DB possible query states 

Status Description 

QUEUED Query has been accepted and is awaiting execution 

PLANNING Query is being planned. 

STARTING Query execution is being started. 

RUNNING Query has at least one running task. 

BLOCKED Query is blocked and is waiting for resources (buffer space, memory, splits, etc.). 

FINISHING Query is finishing (e.g. commit for auto commit queries). 

FINISHED Query has finished executing and all output has been consumed. 

FAILED Query execution failed. 

 
From a technical point of view, Presto requires a Java Virtual Machine (JVM) to run, whereas its UI is based on 
the React framework45. The Presto source code is available on the official GitHub repository46. 
 
 

 
45 https://reactjs.org/ 
46 Presto DB GIT repository - https://github.com/prestodb/presto 



 

 
 
 

 

© URBANAGE GA no: 101004590  63	
 

D3.1 Data Manager Layer. Initial 

Idra 
Idra is an Open Data Federation Platform licensed under Affero General Public License (AGPL version 3) that 
provides functionalities to search, discover and visualize datasets from heterogenous Open Data Management 
Systems (ODMS), working as unique point of access for resources coming from federated ODMS. This platform 
has been developed as a Java Enterprise Edition (J2EE) application and it can be installed in two diverse ways 
as a WAR package deployed in an application server or as a Docker containerized environment. In the 
installation section of the official documentation [20] are reported further information about the two 
installation processes. Idra uniforms representation of collected open datasets, thanks to the adoption of 
international standards (DCAT-AP) and provides a set of RESTful APIs to be used by third party applications. 
Indeed, Idra provides a set of Restful APIs to interact with the tool and its provided functionalities. These APIs 
are developed following the OpenAPI specification [21]. These APIs are grouped into these different groups 
reported in Table 8.  

Table 8: Idra APIs groups 

APIs Group Name APIs Group Description 

Administration APIs APIs devoted to features permitted only to the administration users.   

End-user APIs APIs devoted to provides platform features to the end users. 

Federation APIs APIs devoted to the management of federated catalogues. 

 
Further information about Idra APIs is reported in the official documentation. The Idra platform is responsible 
for collecting metadata of Open Data from federated ODMS catalogues and then for translating them into a 
common and uniform format. Moreover, it manages Linked Open Data (LOD), importing them into a specific 
repository to perform queries. About federation it supports different technologies such as DKAN, CKAN, 
ORION, SOCRATA etc. From the technical point of view, Idra is composed of two components: a backend 
module and a web portal. The web portal provides a user-friendly interface for interaction between end users 
and platform. The backend module exposes a set of RESTFul APIs to interact with the provided diverse 
functionalities invoked by end-users and/or third party. 
Beyond that, Idra provides functionalities to perform federated metadata search among federated catalogues 
and provides capability to filter results of metadata search by using Tags, Data Formats, Licenses and other 
fields as depicted in the two figures below. Another relevant feature is related to data visualization. End users 
can create a graphical representation of a selected resource by using a Datalet [22], a tool integrated with Idra 
that allows to create rich and reusable visualization of open data. 
 
 
 
 
 
 
 



 

 
 
 

 

© URBANAGE GA no: 101004590  64	
 

D3.1 Data Manager Layer. Initial 

Figure 21: Idra user interface 

 
 

Figure 22: Filtered results from a federated metadata search on Idra 

 
 
Data Model Mapper 
The Datamodel Mapper47 is licensed under Affero General Public License (AGPL) version 3 and has been initially 
developed in the context of the SynchroniCity project48. This tool, which requires NodeJS49, is able to translate 
structured input data into NGSI compliant entities. Data Model Mapper is able to convert several file formats 
such as CSV, JSON and GeoJSON according to different data models. For this purpose, the tool uses a mapping 
file, which is a well-formed JSON file, to know which rules it must adopt for mapping each source field of the 
parsed row/object in the destination fields. During the conversion process, the tool performs the steps 
reported in Table 9. 

 
47 Data Model Mapper - https://gitlab.com/synchronicity-iot/data-model-mapper 
48 Synchronicity Project - https://synchronicity-iot.eu/ 
49 https://nodejs.org 



 

 
 
 

 

© URBANAGE GA no: 101004590  65	
 

D3.1 Data Manager Layer. Initial 

Table 9: Data Model Mapper steps  

Step Name Step Description 

Parsing Parsing of input file by converting it into a row/object stream.   

Streaming Each row or object that comes from the stream is converted to an 
intermediate object. 

Mapping Conversion of the intermediate object to an NGSI entity, according to a 
specific target Data Model by using the input JSON Map. 

Validation (and report) Validation of resulting object against the JSON schema corresponding to the 
target Data Model (and production of a report file with validated and 
unvalidated objects). 

Writing Delivery of validated objects to the configured Orion Context Broker writer 
and/or to a local file writer. 

 
The input file to be converted can contain either rows, JSON objects or GeoJson features, each of them 
representing an object to be mapped to an NGSI entity, according to the selected data model passed to the 
tool as an input parameter. For correct mapping, the tool needs the mapping instruction to know how to map 
each source field into the destination fields. The mapping instructions consist of a JSON file, which is a 
collection Key/Value pairs. More detail about mapping has been reported on the official documentation [23]. 
Once Data Model Mapper has been successfully configured by editing paths and variables that are in the global 
configuration file (config.js), the tool is ready to be used. Figure 23 depicts an example of a mapper command 
with the CLI arguments needed to perform a specific conversion. 

Figure 23: Example mapper command on Datamodel Mapper 

 
 
Table 4: Data Model Mapper CLI arguments 

Short Name Long Name Description 

-s --sourceDataPath The path of the source file 

-m --mapPath The path of JSON Map with extension “.json” 

-d --targetDataModel The name of target Data Model that have to match with 
those contained in the “/dataModels” folder 

 
 
 
 
 



 

 
 
 

 

© URBANAGE GA no: 101004590  66	
 

D3.1 Data Manager Layer. Initial 

Orion Context Broker 
Orion Context Broker50 offers functionalities to manage context information and to execute different 
operations like subscriptions, notifications and data gathering. It manages the entire life cycle of context 
information dispatching real-time information received from IoT Agents following an approach based on 
publish-subscribe pattern. The Context Broker receives data from the IoT Agents and from the IT connectors 
and dispatches all received information, which is represented under the form of NGSI-LD entities, to the 
subscribed entities. To execute its job the context broker needs to interact with IoT Agents, which are FIWARE 
Generic Enablers that facilitate the connection of IoT devices, and more specifically it needs to gather context 
information from them. Moreover, these IoT agents can also trigger actuations in response to context updates 
in a flexible way by supporting different protocols such as LoRaWAN, Sigfox, Lightweight M2M and UltraLight. 
Orion Context Broker is developed in C++ language for performance reasons, and it offers an implementation 
of both NGSI-LD [17] and NGSIv2 [24] APIs.  
 
Cygnus 
Cygnus is licensed under Affero General Public License (AGPL) version 3 and persists NGSI-LD entities managed 
by the Context Broker creating an historical view of context information and an historical view of their related 
attributes. Cygnus plays a role of a connector between the NGSI source of data (i.e., Orion Context Broker) 
and many FIWARE storages and tools such as Cosmos Big Data (i.e., Hadoop), STH Comet and other non 
FIWARE storages and tools such as MySQL, Kafka, Carto, etc.  
Indeed, this component is a connector in charge of persisting certain sources of data in certain configured 
third-party storages in diverse technologies, creating a historical view of these data. From the technical point 
of view, Cygnus is based on Apache Flume51. Apache Flume has a simple and flexible architecture based on 
streaming of data flows. It works as a distributed, reliable, and available service for efficiently collecting, 
aggregating, and moving large amounts of data with reliability and fault tolerant mechanisms. Cygnus is 
designed to run a specific Flume agent per source of data. A Flume agent, which is a key concept of Cygnus, is 
a JVM process with three main components needed to propagate events started from external sources that 
are Flume Source, Flume Channel and Flume Sink. 
 
Figure 24 depicts the Flume architecture with these main components and the following steps: 

1. Events generated by external source are consumed by Flume Data Source. (These events are sent in a 
format recognized by target source.) 

2. Flume Source receives an event and stores it into one or more channels. (A channel may use a local 
file system to store these events.) 

3. Flume sink removes the event from a channel and stores it into an external repository. 
 
 
 
 

 
50 FIWARE-ORION - https://fiware-orion.readthedocs.io/en/master/ 
51 Apache Flume - https://flume.apache.org/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  67	
 

D3.1 Data Manager Layer. Initial 

Figure 24: Flume Agent components 

 
 

Following the above steps, it can be summarized that a Cygnus agent is composed of a listener or source in 
charge of receiving data, a channel where the source puts these data and finally a sink which takes Flume 
events from the channel to persist them into a third-party storage. Further details about API methods for 
Cygnus and integration examples are available in the official documentation [18]. 
 
IoT Agents 
IoT Agents support different protocols to gather context information provided by IoT devices through IoT 
connectors. A generic IoT Agent translates IoT-specific protocols into the NGSI context information protocol, 
that is the FIWARE standard data exchange model. In particular, an IoT Agent is a component that lets a group 
of devices send their data to and be managed from a Context Broker using their own native protocols. They 
should also be able to provide common services to the device programmer and to deal with security aspects 
of the FIWARE platform such as authentication and authorization of the channel. There are many existing IoT 
Agents for diverse communication protocols and data models. Table 10 summarises a list of IoT Agents and 
the supported communication protocols with a brief description. For further information about IoT Agents 
refer to the official documentation [25]. 
 

Table 10: IoT Agents and communication protocols 

IoT Agent Protocol Description 

IoTAgent-JSON [26] MQTT Abridge between HTTP/MQTT messaging with a JSON 
payload and NGSI 

IoTAgent-LWM2M [27] Lightweight M2M A bridge between the Lightweight M2M protocol and NGSI 

IoTAgent-UL [28] UltraLight 2.0 A bridge between HTTP/MQTT messaging, with an 
UltraLight2.0 payload, and NGSI 

IoTagent-LoRaWAN 
[29] 

LoRaWAN A bridge between the LoRaWAN protocol and NGSI 

 



 

 
 
 

 

© URBANAGE GA no: 101004590  68	
 

D3.1 Data Manager Layer. Initial 

TRUE Connector 
The aim of this component is to facilitate secure and standardized data exchange and data linkage in a trusted 
ecosystem. Indeed, the FIWARE TRUE Connector enables the trusted data exchange to be active part of an IDS 
Ecosystem52 , i.e. a virtual data space leveraging existing standards and technologies. 
The FIWARE TRUE (TRUsted Engineering) Connector [30] for the IDS (International Data Space) ecosystem, 
released under AGPL version 3 license, can be easily customized to fit a wide spread of scenarios. This 
customization can be done thanks to the internal separation of Execution Core Container and Data App. The 
connector is easily integrable with a lot of existing IDS services and it is extremely configurable in terms of 
internal/external data format such as multipart/mixed, multipart/form, http-header. Moreover, it can be 
configured to supports/uses a huge number of protocols such as HTTP, HTTPS, Web Socket over HTTPS, 
IDSCPv2. The TRUE Connector is composed of three main components reported in Table 11. 

Table 11: TRUE Connector components 

Component Description 

Execution Core Container (ECC)  Representing the connector exchanging data. 

FIWARE Data Application It is in charge of processing incoming request and 
provided the relative responses. 

Usage-Control (UC) Data Application  It will check if who are requesting the data has the grants 
to use that in a well-defined policy.   

 
The TRUE connector can be run as consumer (send the request to the provider to obtain some data) or 
provider (provide the data to the consumers if allowed from the policies in UC). Figure 25 depicts the 
components of the TRUE Connector and the possible roles (consumer and provider). 
 

Figure 25: TRUE Connector components53 

 
 

52 IDS Ecosystem - https://opcfoundation.org/markets-collaboration/ids/ 
53 Image from FIWARE TRUE Connector repository - https://github.com/Engineering-Research-and-Development/fiware-
true-connector/ 



 

 
 
 

 

© URBANAGE GA no: 101004590  69	
 

D3.1 Data Manager Layer. Initial 

Amnesia 
Amnesia is a tool developed by OpenAIRE for Data Anonymization that allows end users to anonymize sensitive 
data in order to share them with a broad audience. Amnesia offers to the users an assisted anonymization 
process by visualizing the candidate solutions and allowing to choose and customize the most convenient one. 
For this purpose, it provides a user-friendly interface to get anonymous data just following the below (macro) 
steps: 

1. Data Import: Import the original data (e.g., a simple text file with any type of delimiter). 
2. Creation of the generalization hierarchies: The user defines the rules for anonymising the data. 
3. Selection/Preview of data to be anonymized and anonymization: The user chooses the algorithm 

and the parameters to perform anonymization. 
4. Download of the anonymized data: The anonymized data can be now downloaded. 

From a technical point of view, Amnesia requires a Java Runtime Environment to run, and its backend is 
implemented by using Spring framework. Its components offer a REST API that handles anonymization 
requests issued by the web interface. Amnesia uses a temporary local storage for the anonymization purposes 
and final results are returned via the REST interface. Further information about REST APIs is available on 
Amnesia Git repository [31]. 


