
 
 

 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant 

agreement No 101004590 

 

 

 

Deliverable 

D5.2 Initial Platform Prototype 

 

 
 

Project Acronym: URBANAGE 

Project title: Enhanced URBAN planning for AGE-friendly cities 

through disruptive technologies 

Grant Agreement No. 101004590 

Website: www.URBANAGE.eu   

Version: 1.0 

Date: 31/01/2022 

Responsible Partner: ATC 

Contributing Partners: ENG, TEC 

Reviewers: Jan Willem (IMEC)  

Jurgen Silence (AIV) 

Dissemination Level: Public x 

Confidential – only consortium members and European 

Commission  

 

 

  

Ref. Ares(2022)718617 - 31/01/2022

http://www.urbanage.eu/


 

 
 

 

 

© URBANAGE GA no: 101004590 2 

 

D5.2 Initial Platform Prototype 

Revision History 

Revision Date Author Organization Description 

0.1 02/09/2021 Athanasios Dalianis ATC ToC 

0.2 01/10/2021 Athanasios Dalianis ATC Initial input in all 
chapters 

0.3 10/11/2021 Athanasios Dalianis 
 

ATC Input in chapters 
3,4,5 

0.4 12/01/2021 Giuseppe Ciulla ENG Input in Section 4 

0.5 13/01/2022 Maritini Kalogerini ATC Input in chapters 
1,2,6 & addressing 

comments from 
TEC 

0.6 17/01/2022 Jan Willem IMEC Internal Review & 
comments 

0.7 19/01/2022 Jurgen Silence,  

Andreas Hens 

AIV Internal Review & 
comments 

1.0 24/01/2022 Athanasios Dalianis & 
Maritini Kalogerini 

ATC Final version 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

© URBANAGE GA no: 101004590 3 

 

D5.2 Initial Platform Prototype 

Table of Contents 
1 Executive Summary 6 

2 Introduction 7 

3 Setting up the URBANAGE environment 8 

3.1 Agile Methodology 8 

3.2 API Guidelines 9 

3.3 Overview of the tools and CI/CD process 9 

3.3.1 Task management 10 

3.3.2 Deployment 10 

3.3.2.1.1 Hardware and Software requirements 11 

3.3.3 Repositories 12 

3.3.4 Testing and Code Quality 13 

3.3.5 Monitoring 14 

3.3.6 CI/CD Process 14 

4 Data Integration 16 

5 System Validation 18 

5.1 Introduction 18 

5.2 ISO/IEC 25010:2011 18 

5.2.1 Quality in use model 19 

5.2.2 Product quality model 19 

5.3 Designing a quality model 20 

5.3.1 Understanding the product quality model 20 

5.3.2 Functional suitability 20 

5.3.3 Performance efficiency 20 

5.3.4 Compatibility 21 

5.3.5 Usability 21 

5.3.6 Security 21 

5.3.7 Maintainability 22 

5.3.8 Reliability 22 

5.3.9 Portability 22 

6 Conclusion 24 



 

 
 

 

 

© URBANAGE GA no: 101004590 4 

 

D5.2 Initial Platform Prototype 

7 References 25 

8 Annex 1: Technical Questionnaire 26 

 

 

Table of Figures 
Figure 1: Agile methodology workflow 9 

Figure 2: The URBANAGE GitLab repositories 12 

Figure 3: CI/CD Pipeline 15 

Figure 4: The ISO/IEC 25010:2011 system/software quality model characteristics 19 

 

Table of Tables 
Table 1: Integration tools 9 

Table 2: Component's hardware and software requirements 11 

Table 3: Data integration strategies overview 17 

 

  



 

 
 

 

 

© URBANAGE GA no: 101004590 5 

 

D5.2 Initial Platform Prototype 

List of abbreviations 

Abbreviation Explanation 

API Application Programming Interface 

CI/CD Continuous Integration / Continuous Deployment 

CIM City Information Model 

CSV Comma Separated Values 

DevOps Development Operations 

DML Data Management Layer 

HTTP(S) Hypertext Transfer Protocol (Secure) 

JSON JavaScript Object Notation 

REST Representational State Transfer 

UI User Interface 

YAML YAML Ain't Markup Language  

 

 

  



 

 
 

 

 

© URBANAGE GA no: 101004590 6 

 

D5.2 Initial Platform Prototype 

1 Executive Summary 

This document summarizes the activities done under Task 5.2. ‘’DevOps process set up’’ up to now, as well as 

the activities to be performed during the Task’s lifetime. More specifically, Deliverable 5.2 “Initial Platform 

Prototype”, defines, gathers, and presents the necessary DevOps processes to be used during the URBANAGE 

project. For the integration considerations, Agile Software Development Practices are being described and for 

the Continuous Integration & Deployment Practices a suitable development environment with continuous 

integration and deployment tools is presented in D5.2. More specifically, an overview of the tools and the 

CI/CD processes are analysed, with focus on the deployment component, the Hardware and Software 

requirements, the repositories, the monitoring process, etc. Moreover, this document summarizes an 

overview of the proposed data integration strategies, posing some preparatory and guiding questions. Finally, 

an overview of the methodology that will be used, with focus on ISO/IEC 25010:2011, for the system validation 

of the platform is being presented. 

 

 

  



 

 
 

 

 

© URBANAGE GA no: 101004590 7 

 

D5.2 Initial Platform Prototype 

2 Introduction 

Via URBANAGE activities, the consortium plans to implement a framework for decision making in the field of 

urban planning, with special focus on facilitating the older people aging well in cities. The process of the 

decision making is data-driven, taking advantage of massive data production and enhanced analytical 

capacities in the context of the current digital-era. A decision-support Ecosystem will be the basis of the pre-

mentioned framework and it will integrate Big Data Analysis, modelling and simulation techniques with 

Artificial Intelligence algorithms, adapted visualization methods through Urban Digital Twins and gamification 

for enhanced engagement purposes. WP5 “Ecosystem & Integration” is the main work package for the 

provision of the core integration activities, which will address the building of a replicable and extendable core 

system.  

Among other important activities for the creation of the Ecosystem, the DevOps process set up activities aim 

to describe the necessary tools for Source Code Management, Package Management, Building and Deploying, 

as well as the pipelines for developing, integrating, and validating the software components.  Taking into 

account the specific requirements of the development methodologies in this project, a ‘Rapid Application 

Development’ is proposed to be followed for the integration purposes of the URBANAGE activities, and more 

specifically the one of the most popular types, the ‘Agile Methodology’. In the following sections we 

summarize all the parameters for setting up the URBANAGE environment as well as the proposed methods for 

Data Integration and System Validation. 

 

This document is structured as follows: 

 Section 3, provides an overview of the URBANAGE development environment in terms of 

management and implementation methodologies, development and monitoring tools and 

deployment specifications and processes. 

 Section 4, presents briefly the data integration approach for the project  

 Section 5, analyzes the system validation methodology that will be followed in URBANAGE 

 Section 6, concludes this report.  

 

  



 

 
 

 

 

© URBANAGE GA no: 101004590 8 

 

D5.2 Initial Platform Prototype 

3  Setting up the URBANAGE environment 

For the integration purposes of the URBANAGE project we are going to follow the Agile Software Development 

Practices with frequent integration cycles, rapid prototyping, and close collaboration between self-organizing, 

cross-functional teams. Based on agile principles, we are also going to apply Continuous Integration techniques 

for performing automated building, testing and deployment of the provided modules. For adopting 

Continuous Integration & Continuous Deployment practices we are going to set up a development 

environment containing a set of continuous integration and deployment tools. 

3.1 Agile Methodology 

Research among the most dominant development methodologies [1] indicates that the most appropriate way 

of implementing integration mechanisms for the URBANAGE platform would be ‘Rapid Application 

Development’. This implies that a system prototype is implemented, tested, and evaluated in an iterative 

manner, using short cycles to add functionality to the prototype. This is more suitable for an Innovation action 

project aiming to deliver a system prototype, since it enables end users to continuously participate in the 

development of the integration mechanisms and guide the development towards their needs. In this manner, 

the processes of implementation and definition of the integration mechanisms will proceed in parallel until 

the end of the project by means of close collaboration between all the teams. One of the most popular types 

of Rapid Application Development is the ‘Agile Methodology’, which is associated with a list of terms and rules 

that must be followed during development as described in the ‘Agile Manifesto’ [2].  

 
Agile methodology implies and enforces collaboration between self-organizing, cross-functional teams. It 

promotes adaptive planning, evolutionary development and delivery, a time-boxed iterative approach, and 

encourages rapid and flexible response to change. Some of the principles of the Agile Manifesto are: 

 
 Welcome changing requirements, even late in development 
 Working software is delivered frequently (weeks rather than months) 
 Working software is the principal measure of progress 
 Customer satisfaction by rapid delivery of useful software 
 Close, daily cooperation between businesspeople and developers 
 Projects are built around motivated individuals, who should be trusted 
 Continuous attention to technical excellence and good design 
 Simplicity 
 Self-organizing teams 
 Regular adaptation to changing circumstances 

 
The methodology workflow could be reflected in the following diagram [3]: 

 



 

 
 

 

 

© URBANAGE GA no: 101004590 9 

 

D5.2 Initial Platform Prototype 

 

Figure 1: Agile methodology workflow 

3.2 API Guidelines  

Most of the components developed in URBANAGE will have APIs exposed. It is important that these APIs follow 

best practices for better understanding and communication. The minimum API guidelines that need to be 

followed are summarized in the following list: 

 All APIs should use the JSON / REST protocol, over HTTP for internal APIs or HTTPS for publicly available 
ones   

 APIs must return the appropriate HTTP status codes based on status code definitions [4] 
 APIs must use the correct service methods [5] for their operations 
 APIs must be cacheable when possible 
 APIs must support versioning  
 APIs must support security measures such as authorization headers 
 APIs must support pagination  

3.3 Overview of the tools and CI/CD process 

In this section we present the tools that will be used for the integration of the components of the URBANAGE 

system. An overview of these tools is presented in the table below. 

 
Table 1: Integration tools 

Category Tool 

Task management Gitlab 

Component packaging Docker 

Component orchestration Docker compose 

Component images repository Gitlab registry 

Cloud services provision Hetzner managed server 



 

 
 

 

 

© URBANAGE GA no: 101004590 10 

 

D5.2 Initial Platform Prototype 

3.3.1 Task management 

To coordinate the technical efforts between the technical partners and break down the user requirements 

into technical tasks, in compliance to the agile principles, we have set up an URBANAGE space on Gitlab [6].  

Gitlab offers a tool that provides an easy way to create epics, user stories and tasks, to plan agile sprints and 

assign work to the agile teams, and to keep track of the progress done. 

 

For the purposes of the project: 
 Initially the user requirements will be translated to the relevant epics and user stories, and these will 

be added to Gitlab. 
 The technical teams will provide the relevant tasks analyzing the epics and stories.  
 These will be refined frequently based on the users’ feedback and the projects progress.    
 Monthly sprint planning sessions will take place, where each sprint contains the prioritized tasks that 

can be implemented in the given time, after discussion with all the technical teams.  
 Monthly sprint reviews will take place where the results of each sprint are presented to the pilots       

3.3.2 Deployment 

For component isolation and easy deployment, we are going to use Docker [7], whenever possible, that is, all 

the components developed for the URBANAGE platform, will have to be dockerized. 

 

Docker packages and runs applications in Docker images. A Docker image is a lightweight, standalone, 

executable package of software that includes everything needed to run an application: code, runtime, system 

tools, system libraries and settings. Docker images are stored in a Docker registry and in order to run them in 

virtual or physical machines, the machines need to have installed the Docker Engine software. The running 

instance of a Docker image is called Docker container. A container is a standard unit of software that packages 

up code and all its dependencies, so the application runs quickly and reliably from one computing environment 

to another.  

 

For orchestrating and monitoring the Docker containers of the projects we will use Docker compose [8]. 

Compose is a tool for defining and running multi-container Docker applications. With Compose, we use a YAML 

file to configure the application’s services. Then, with a single command, we create and start all the services 

defined in the configuration. 

 

Code repository Gitlab 

Component deployment Gitlab pipelines 

Code Testing  JUnit, Mockito, Mocha, Jest, Nose 

Monitoring Prometheus, Grafana 

Code Quality  SonarQube 



 

 
 

 

 

© URBANAGE GA no: 101004590 11 

 

D5.2 Initial Platform Prototype 

The URBANAGE solution will be cloud agnostic, that is, a city at the end of the project will be able to deploy 

the URBANAGE components, to any cloud provider or cluster of virtual or physical servers, by following the 

URBANAGE instructions. 

 

3.3.2.1.1 Hardware and Software requirements 

 

The following table summarizes an initial estimation of the component’s requirements in terms of hardware, 

as well as their software dependencies, as these were derived from the component’s questionnaires (Annex 

1: Technical Questionnaire) and the discussions with the technical team of the project. In the same table we 

also depict to which pilots a component participates based on the user requirements defined. These 

requirements were used to define the server specifications for the development environment. More 

information about these components can be found in D5.1 [9].  

Table 2: Component's hardware and software requirements 

Component RAM CPU  Disk Space Software dependencies Pilot 

Open Data 

Federator (Idra) 
8GB 2 cores 40GB 

Java 8 JDK 

Apache tomcat 8.5 

RDF4J Server and Workbench 2.2.1 

MySQL 5.7.5 

ALL 

Orion Context 

Broker 
4GB 2 cores 20GB MongoDB ALL 

Connectors for 

IoT 
512MB 1 core 200MB Node JS ALL 

Data Repositories 

Federator 
16GB 4 cores 300MB Presto DB ALL 

Data Model 

Mapper 
4GB 2 cores 20GB Node JS 8.11+ ALL 

CIM 8GB 2 cores 100GB 
PostgreSQL DB, PostGIS 

GeoServer, Tomcat 
Santander 

City 

Visualisation 

Viewer 

8GB 2 cores 100GB 
Java, Javascript 

Tomcat, PostgreSQL 
Santander 

Simulation 8GB 4 cores 2GB MLFlow, TensorFlow, Databriks ALL 

Optimisation 8GB 4 cores 2GB MLFlow, TensorFlow, Databriks ALL 

Predictive / 

prescriptive 

analytics 

8GB 4 cores 100GB TensorFlow, Spark ALL 

Big Data Storage 8GB 4 cores 100GB 
Apache HBase, MongoDB, Kafka, 

MIN.IO 
ALL 

Geospatial 

integration 
8GB 2 cores 2GB Sedona, Spark ALL 

Timeseries 

modelling 
8GB 2 cores 1GB 

MLFlow, Pandas library, 

scikits.timeseries  

 

ALL 

Workflow 

management 
8GB 2 cores 20GB 

Airflow, PostgreSQL 10+ 

Python 3.6+ 
ALL 



 

 
 

 

 

© URBANAGE GA no: 101004590 12 

 

D5.2 Initial Platform Prototype 

Platform UIs & 

microservices 
4GB 2 cores 2GB React JS, Spring Boot, PostgreSQL ALL 

Data exploration 

/visualization 
2GB 2 cores 1GB React JS, SuperSet ALL 

Identity Manager 

(KeyCloak) 
1GB 

single 

core 
1GB PostgreSQL, Docker ALL  

Message Bus 

(Kafka) 
6GB  2 cores 10GB Docker ALL 

Monitoring tools 

like Prometheus, 

Grafana, 

SonarQube 

2 GB 2 cores 2GB PostgreSQL, Docker ALL 

 

For the purposes of the project’s platform prototype staging versions, we plan to deploy the URBANAGE 

components to a managed server provided by Hetzner [10].  More specifically we plan to use the MA-120 

server [11] which features 128GB DDR4 RAM, 24-cores AMD EPYC 7401P CPU and 2 x 960GB NVMe SSD disks, 

which we consider more than enough for the needs of the development environment of the project.  

3.3.3 Repositories 

As a repository for the project’s open-source code, a new group at GitLab was created [12].  

 

 

Figure 2: The URBANAGE GitLab repositories 

GitLab provides a free private space on cloud, with unlimited repositories and users and a set of tools like wiki-

based documentation and issue boards. More importantly GitLab offers functionality to automate the entire 

DevOps life cycle, through its GitLab CI/CD pipelines features.         

 



 

 
 

 

 

© URBANAGE GA no: 101004590 13 

 

D5.2 Initial Platform Prototype 

Technical partners that intend to provide their code under commercial license, are not obliged to use the 

URBANAGE GitLab repository, however the integration guidelines and quality standards set for all components 

applies to their own as well.  

 

All components that will be deployed in the URBANAGE platform, must be dockerized. This means that a 

private Docker registry for the project is required, so that the deployment of the Docker images can be done 

in a uniform and easy manner. 

To this end, we will use the Gitlab container registry [13]. The Gitlab container registry is one of the tools Gitlab 

provides and is tightly integrated with all the features Gitlab has to offer.  

3.3.4 Testing and Code Quality 

The system validation methodology is described in more detail in Section 5 of the current document. In this 

subsection we present some of the tools that can be used to retrieve the measurements that will be defined 

based on the methodology metrics.  

All components developed for URBANAGE, will include unit and/or integration tests, to guarantee a higher 

level of code quality.  

Unit tests are automated tests that check if a small part of the application, known as a unit, behaves as it is 

intended to. In unit testing, any dependencies the unit may have are replaced by “mock” units, that is, units 

that just return a defined response without implementing any actual functionality.  

Integration tests check the behaviour of not only one unit, but a group of units that work together for the 

completion of a specific functionality. All the dependencies, in this case, including external ones like databases, 

are real. 

Various tools exist for implementing unit and integration tests, in all popular programming languages like: 

 

 Junit [14], Mockito [15] for Java 

 Karma [16], Mocha [17], Chai [18] for Node JS 

 Unittest [19], nose [20] for Python 

 Jest [21], Mocha for React JS etc 

 

Besides the unit and integration tests, the URBANAGE APIs will undergo stress tests to measure their 

performance under load. A tool that can be used for this purpose is JMeter.  

JMeter [22] is designed to load test functional behaviour and measure performance of web applications and 

web services by defining a set of Web Services Test Plan, which include information like the parameters of the 

service, the number of concurrent users, the time frame etc.  

    

In order to have a more reliable and globally accepted measure of code quality, for the various quality metrics 

defined in the validation methodology, the popular SonarQube a quality gateway will be used. 

SonarQube [23] is an open-source platform developed for continuous inspection of code quality to perform 

automatic reviews with static analysis of code to detect bugs, code smells, and security vulnerabilities on more 



 

 
 

 

 

© URBANAGE GA no: 101004590 14 

 

D5.2 Initial Platform Prototype 

than 20 programming languages. SonarQube offers reports on duplicated code, coding standards, unit tests, 

code coverage, code complexity, comments, bugs, and security vulnerabilities. 

3.3.5 Monitoring 

In systems like URBANAGE, it is important to ensure that the different system element services are running 

smoothly. To this end, the overall performance of the system needs to be monitored continuously and actions 

to be taken by a system administrator in case of performance degradation or system failure.  

 

The URBANAGE system should be cloud agnostic and since during the project more performance metrics may 

be defined, additional monitoring tools should be deployed in the platform. Some of these tools can be 

Prometheus [24] and Grafana [25].     

 

Prometheus is an open-source tool under Apache License, used for event monitoring and alerting. It records 

real time metrics and stores them in a time series database. It features functionalities like distributed storage, 

multiple nodes of graphing and dashboarding support and can collaborate with a wide range of tools like 

Docker, Kubernetes and Grafana. 

Grafana is open-source and extendable analytics and interactive visualization web application, that allows a 

user to query and visualize data, through a set of charts, graphs and alerts, no matter where this data is stored.  

3.3.6 CI/CD Process 

For the purposes of Continuous Integration and Deployment, we are going to use the GitLab pipelines feature.  

Pipelines are the top-level component of continuous integration, delivery, and deployment and are composed 

of Jobs that define what needs to be done and Stages that define when the jobs must run. 

The Jobs of each Stage can be executed in parallel while the Stages can only be completed sequentially. If all 

the Jobs of a Stage complete successfully, then the pipeline proceeds to the next Stage. If a Job fails, then the 

whole pipeline fails. 

The pipelines are defined in specific files (gitlab-ci.yml) stored in the root folder of the code repository and 

involve the creation of integration parameters on the administration pages of GitLab.  

The URBANAGE code projects will have to run the pipeline depicted in Figure 3 and has the following Stages: 

1. Build the code. This can be considered for example the equivalent of mvn build or npm build in Java 
and Node JS respectively 

2. Run the unit and integration tests defined in the code project. If one of the tests fails, the pipeline fails 
3. Produce the quality metrics and push them to the project’s SonarQube for further evaluation 
4. Create the Docker image of the component and push it to the relevant Docker image registry 
5. Deploy the component to the project’s server and run docker-compose 



 

 
 

 

 

© URBANAGE GA no: 101004590 15 

 

D5.2 Initial Platform Prototype 

 

 

Figure 3: CI/CD Pipeline 

 

  



 

 
 

 

 

© URBANAGE GA no: 101004590 16 

 

D5.2 Initial Platform Prototype 

4 Data Integration 

Data integration involves combining data coming from different sources to present the data under a unified 

view. 

This is one of the aims of the Data Management Layer (DML) of the URBANAGE platform. This kind of capability 

is significant when dealing with data from heterogeneous sources, especially when the volume of the data 

increases (e.g. with big data), and is an essential preparatory step to enable high-level functionalities (e.g. 

machine learning). 

Similar to data aggregation operations [26], also data integrations operations will depend on the specific needs 

of the use cases and, the analysis to be performed, machine learning algorithms to be trained, etc. So, this 

kind of operations will be evaluated, planned, and designed case by case. 

To this aim, and before the concrete implementation of a data integration process, some preparatory and 

guiding questions should be answered considering the final results to be achieved (e.g. a data analysis to be 

performed).  

Each question represents a step of a more general process. 

 

 What data do I need? To answer this question, it is necessary to have a complete view of the problem 

to solve and of its context, furthermore, cooperation and discussion between different involved 

stakeholders is also necessary (e.g. problem owners, domain experts, data analysts, etc.)  

 Is the needed data available? To answer this question, it is important to identify the data owner that 

can provide the needed data. Is it the problem owners? Should part of the needed data be provided 

by other bodies? Is the data public (e.g. Open Data) or released under a specific license? 

 What is the format of the available data? It is important to ensure that available data is provided with 

the right format for the specific analysis to be implemented and for the data integration process to be 

realised; for instance, in many cases, it is necessary to access the data through a structured and 

machine-readable format (e.g. CSV, JSON, etc.), and the other kinds of formats (like PDF files) imply 

additional preparatory steps or even the failure of the entire process. 

 How the data is accessible? It is important to identify the correct procedure to access the data. For 

instance, if the data is exposed through an API, or a database, or through a static file in a repository, 

and if any authentication mechanisms are in place. 

 

Once these questions are answered, it is possible to design the more appropriate data integration process for 

the specific results to be achieved. 

To this aim, it is possible to consider different strategies. Some of them are summarised in following table with 

their main pros and cons.  

 

 



 

 
 

 

 

© URBANAGE GA no: 101004590 17 

 

D5.2 Initial Platform Prototype 

Table 3: Data integration strategies overview 

Strategy Short description Pros Cons 

Manual data 
integration 

The user manually accesses the 
data and operate on it all phases 
of the data integration 

The user has the full control 
over the integration process. 

Not possible to operate on 
huge amount of data. 
Greater possibility of errors 
(due to manual operations) 

Application-
based 
integration 

The final software applications 
perform all the operations to 
realise the needed data 
integration (locate, retrieve, and 
integrate data). 

All the process is centralised 
in one application. 
Reduction of resources 
needed to perform the data 
integration process. 

Huge complexity of the 
single software application 
(e.g. when the number of 
data sources increases) 
drive to difficult 
maintenance. 

Middleware 
data integration 

An application acts as a 
middleware layer facilitating 
communication among different 
systems. 

Immediate access to the 
data offered by the 
underlying systems. 

High technical knowledge 
for the deployment and 
maintenance of the 
middleware. 

Uniform access 
integration 

Data is left on the original source, 
and it is retrieved and uniformly 
“displayed” when needed. 

There is no need to further 
store the data. 

A high number of data 
sources can lead to data 
integrity problems. 

Common 
storage 
integration (or 
data 
warehousing) 

Data is copied and harmonised 
from the source system into a new 
one. 

Better management of the 
data (e.g. integrity, 
uniformity, etc.) and 
possibility to perform 
numerous queries and 
analysis. 

Increased storage and 
maintenance costs. 

 

DML offers natively the possibility to adopt the Uniform access integration and the Common storage 

integration strategies. 

 

Concerning the Uniform access integration strategy, the Data Repository Federator allows to perform 

distributed SQL queries over multiples federated sources, presenting the results with a uniform 

representation. 

  

Concerning the Common storage integration strategy, as for the previous one, this is realised thanks to the 

Data Repository Federator, which results are then harmonised by the Datamodel Mapper and stored into the 

URBANAGE Data Lake. In addition, context information coming from different sensors and (legacy) IT 

Platforms are uniformly managed by the Context Broker. 

  



 

 
 

 

 

© URBANAGE GA no: 101004590 18 

 

D5.2 Initial Platform Prototype 

5 System Validation 

In this section we provide an overview of the methodology that will be used for the system validation of the 

platform. More specifically we present the ISO/IEC 25010:2011 and explain its quality characteristics. Out of 

these characteristics we will select the most appropriate ones, in order to form the most suitable quality model 

for the URBANAGE project and perform our validation tests to the final version of the URBANAGE platform. 

5.1 Introduction 

Software validation is the “confirmation by examination and provision of objective evidence that software 

specifications conform to user needs and intended uses, and that the particular requirements implemented 

through software can be consistently fulfilled” [27]. Since software is usually part of a larger system, the 

validation of software typically includes evidence that all software requirements have been implemented 

correctly and completely. 

In general, software validation is the process of developing a “level of confidence” that the system meets all 

requirements, functionalities, and user expectations as set out during the design process. It is a critical tool 

used to assure the quality of its component and the overall system. It allows for improving/refining the end 

product. 

Software validation is realized through quality models. In the past, different quality models have been 

proposed, each one of which addresses different quality attributes that allow evaluating the developed 

software. Some of the most well-known are: 

McCall's model of software quality (GE Model, 1977), which incorporates 11 criteria encompassing product 

operation, product revision and product transition. 

Boehm's spiral model (1978) based on a wider range of characteristics, which incorporates 19 criteria. The 

criteria in both this and the GE model, are not independent as they interact with each other and often cause 

conflicts. 

ISO 9126-1 [28] incorporates six quality goals, each goal having a large number of attributes. These six goals 

are then further split into sub-characteristics, which represent measurable attributes (custom defined for each 

software product). 

5.2 ISO/IEC 25010:2011 

Recently, the BS ISO/IEC 25010:2011 [29] standard about system and software quality models has replaced 

ISO 9126-1. Applying any of the above models is not a straightforward process. There are no automated means 

for testing software against each of the characteristics defined by each model. For each model, the final 



 

 
 

 

 

© URBANAGE GA no: 101004590 19 

 

D5.2 Initial Platform Prototype 

attributes must be matched against measurable metrics and thresholds for evaluating the results must be set. 

It is then possible to measure the results of the tests performed (either quantitative or qualitative/observed). 

The ISO/IEC 25010:2011 standard is the most widespread reference model and includes the common software 

quality characteristics that are supported by the other models. This standard defines two quality models 

providing a consistent terminology for specifying, measuring and evaluating system and software product 

quality, as described below. 

5.2.1 Quality in use model 

The Quality in use model is composed of five characteristics that relate to the outcome of interaction with the 

system and characterizes the impact that the product can have on the stakeholders. It pertains to the notion 

of external quality, i.e. the quality of a (software) product as perceived by its users. External quality assesses 

the characteristics of the product quality model by black-box measurement. 

5.2.2 Product quality model 

The Product quality model is composed of eight characteristics that relate to static properties of software and 

dynamic properties of the computer system. It is intended to measure the internal quality, i.e. the quality of 

the software (and, particularly, its internal components) that eventually delivers external quality. Internal 

quality assesses the characteristics of the product quality model by glass-box measurement, i.e. measuring 

system properties based on knowledge about the internal structure of the software. In each case, the product 

quality model is adopted. The eight quality characteristics, are further divided into sub-characteristics, as 

shown in the following figure: 

  

Figure 4: The ISO/IEC 25010:2011 system/software quality model characteristics 



 

 
 

 

 

© URBANAGE GA no: 101004590 20 

 

D5.2 Initial Platform Prototype 

Although rather generic, not all of the listed quality characteristics might be applicable for our purpose, so a 

tailor-made subset could be better suited. For each of the sub-characteristics, a metric/measurable attribute 

will be defined, along with thresholds. These metrics and thresholds are customized for each software product, 

which in our case is the URBANAGE platform (consisting of individual components). By evaluating these 

metrics, we will be able to assess the overall quality of our platform and the percent to which we were able to 

meet the user and technical requirements (reflected to system specifications and functionalities), defined 

during the design phase of the project. 

5.3 Designing a quality model 

As we have seen, a quality model is the cornerstone of a product quality evaluation system. It determines 

which quality characteristics will be considered when evaluating the properties of a software product. 

5.3.1 Understanding the product quality model 

The quality of a system is the degree to which the system satisfies the stated and implied needs of its various 

stakeholders, and thus provides value. Those stakeholders' needs are precisely what is represented in the 

quality model, which categorizes the product quality into characteristics and sub-characteristics, as defined 

below. 

5.3.2 Functional suitability 

This characteristic represents the degree to which a product or system provides functions that meet stated 

and implied needs when used under specified conditions. This characteristic is composed of the following sub 

characteristics: 

 Functional completeness. Degree to which the set of functions covers all the specified tasks and user 
objectives. 

 Functional correctness. Degree to which a product or system provides the correct results with the 
needed degree of precision. 

 Functional appropriateness. Degree to which the functions facilitate the accomplishment of specified 
tasks and objectives. 

5.3.3 Performance efficiency 

This characteristic represents the performance relative to the number of resources used under stated 

conditions. This characteristic is composed of the following sub characteristics: 

 Time behavior. Degree to which the response and processing times and throughput rates of a product 
or system, when performing its functions, meet requirements. 

 Resource utilization. Degree to which the amounts and types of resources used by a product or 
system, when performing its functions, meet requirements. 



 

 
 

 

 

© URBANAGE GA no: 101004590 21 

 

D5.2 Initial Platform Prototype 

 Capacity. Degree to which the maximum limits of a product or system parameter meet requirements. 

5.3.4 Compatibility 

This is the degree to which a product, system or component can exchange information with other products, 

systems or components, and/or perform its required functions, while sharing the same hardware or software 

environment. This characteristic is composed of the following sub characteristics: 

 Co-existence. Degree to which a product can perform its required functions efficiently while sharing 
a common environment and resources with other products, without detrimental impact on any other 
product. 

 Interoperability. Degree to which two or more systems, products or components can exchange 
information and use the information that has been exchanged. 

5.3.5 Usability 

This characteristic represents the degree to which a product or system can be used by specified users to 

achieve specific goals with effectiveness, efficiency and satisfaction in a specified context of use. This 

characteristic is composed of the following sub characteristics: 

 Appropriateness recognizability. Degree to which users can recognize whether a product or system 
is appropriate for their needs. 

 Learnability. Degree to which a product or system can be used by specified users to achieve specific 
goals of learning to use the product or system with effectiveness, efficiency, freedom from risk, and 
satisfaction in a specified context of use. 

 Operability. Degree to which a product or system has attributes that make it easy to operate and 
control. 

 User error protection. Degree to which a system protects users against making errors. 
 User interface aesthetics. Degree to which a user interface enables pleasing and satisfying interaction 

for the user. 
 Accessibility. Degree to which a product or system can be used by people with the widest range of 

characteristics and capabilities to achieve a specified goal in a specified context of use. 

5.3.6  Security 

This is the degree to which a product or system protects information and data so that persons or other 

products or systems have the degree of data access appropriate to their types and levels of authorization. This 

characteristic is composed of the following sub characteristics: 

 Confidentiality. Degree to which a product or system ensures that data are accessible only to those 
authorized to have access. 

 Integrity. Degree to which a system, product or component prevents unauthorized access to, or 
modification of, computer programs or data. 



 

 
 

 

 

© URBANAGE GA no: 101004590 22 

 

D5.2 Initial Platform Prototype 

 Non-repudiation. Degree to which actions or events can be proven to have taken place, so that the 
events or actions cannot be repudiated later. 

 Accountability. Degree to which the actions of an entity can be traced uniquely to the entity. 
 Authenticity. Degree to which the identity of a subject or resource can be proved to be the one 

claimed. 

5.3.7 Maintainability 

This characteristic represents the degree of effectiveness and efficiency with which a product or system can 

be modified to improve, correct, or adapt it to changes in environment, and in requirements. This 

characteristic is composed of the following sub characteristics: 

 Modularity. Degree to which a system or computer program is composed of discrete components 
such that a change to one component has minimal impact on other components. 

 Reusability. Degree to which an asset can be used in more than one system, or in building other assets. 
 Analyzability. Degree of effectiveness and efficiency with which it is possible to assess the impact on 

a product or system of an intended change to one or more of its parts, or to diagnose a product for 
deficiencies or causes of failures, or to identify parts to be modified. 

 Modifiability. Degree to which a product or system can be effectively and efficiently modified without 
introducing defects or degrading existing product quality. 

 Testability. Degree of effectiveness and efficiency with which test criteria can be established for a 
system, product or component and tests can be performed to determine whether those criteria have 
been met. 

5.3.8 Reliability 

This is the degree to which a system, product or component performs specific functions under specified 

conditions for a certain period. This characteristic is composed of the following sub characteristics: 

 Maturity. Degree to which a system, product or component meets needs for reliability under normal 
operation. 

 Availability. Degree to which a system, product or component is operational and accessible when 
required for use. 

 Fault tolerance. Degree to which a system, product or component operates as intended despite the 
presence of hardware or software faults. 

 Recoverability. Degree to which, in the event of an interruption or a failure, a product or system can 
recover the data directly affected and re-establish the desired state of the system. 

5.3.9 Portability 

Portability is the degree of effectiveness and efficiency with which a system, product or component can be 

transferred from one hardware, software or other operational or usage environment to another. This 

characteristic is composed of the following sub characteristics: 



 

 
 

 

 

© URBANAGE GA no: 101004590 23 

 

D5.2 Initial Platform Prototype 

 Adaptability. Degree to which a product or system can effectively and efficiently be adapted for 
different or evolving hardware, software or other operational or usage environments. 

 Installability. Degree of effectiveness and efficiency with which a product or system can be 
successfully installed and/or uninstalled in a specified environment. 

 Replaceability. Degree to which a product can replace another specified software product for the 
same purpose in the same environment. 

 
 



 

 
 

 

 

© URBANAGE GA no: 101004590 24 

 

D5.2 Initial Platform Prototype 

6 Conclusion 

In this document we summarized the research activities for setting up the working environment for the 

URBANAGE platform integration. More specifically, Deliverable 5.2 “Initial Platform Prototype”, defines, 

gathers and presents the necessary DevOps processes to be used during the URBANAGE project. The main 

findings/recommendations include the adoption of Agile Software Development Practices as well as the 

adoption of 7 specific API guidelines. Moreover, tools such as Gitlab (Gitlab registry, Gitlab pipeline), Docker, 

& Docker compose, JUnit, SonarQube etc have been selected for the integration of the components of the 

URBANAGE system. Also, special focus has been given to the initial estimation of the component’s 

requirements in terms of hardware and software, as described in Table 2.  In addition, the design of a more 

appropriate data integration process, has been facilitated through the creation of preparatory and guiding 

questions. Finally, the methodology that will be used for the system validation has been developed under 

ISO/IEC 25010:2011 standard. In that scope, the design of initial platform prototype and its characteristics and 

guidelines, have been gathered, analyzed and proposed to the URBANAGE consortium.  

  



 

 
 

 

 

© URBANAGE GA no: 101004590 25 

 

D5.2 Initial Platform Prototype 

7 References 

[1] http://en.wikipedia.org/wiki/Software_development_methodology  
[2] http://agilemanifesto.org/  
[3] https://www.conceptdraw.com/How-To-Guide/scrum-workflow  
[4] https://restfulapi.net/http-status-codes/ 
[5] https://restfulapi.net/http-methods  
[6] https://about.GitLab.com/solutions/agile-delivery/  
[7] https://www.docker.com/   
[8] https://docs.docker.com/compose/   
[9] D5.1 System Architecture & Implementation Plan 
[10] https://www.hetzner.com/  
[11] https://www.hetzner.com/managed-server/ma120  
[12] https://gitlab.com/urbanageeu 
[13] https://docs.gitlab.com/ee/user/packages/container_registry/  
[14] https://junit.org/junit5/ 
[15] https://site.mockito.org/  
[16] https://karma-runner.github.io/latest/index.html 
[17] https://mochajs.org/ 
[18] https://www.chaijs.com/  
[19] https://docs.python.org/3/library/unittest.html 
[20] https://pypi.org/project/nose/  
[21] https://jestjs.io/ 
[22] https://jmeter.apache.org/ 
[23] https://www.sonarqube.org/ 
[24] https://prometheus.io/ 
[25] https://grafana.com/ 
[26] D3.1 Data Manager Layer. Initial  
[27] https://www.complianceonline.com/resources/software-verification-and-validation-requirements-
for-medical-device-and-implementation-
strategies.html#:~:text=Software%20validation%20is%20the%20%22confirmation,software%20can%20b
e%20consistently%20fulfilled.%22  
[28] https://en.wikipedia.org/wiki/ISO/IEC_9126  
[29] https://www.iso.org/standard/35733.html  
 

 

 

  

http://en.wikipedia.org/wiki/Software_development_methodology
http://agilemanifesto.org/
https://www.conceptdraw.com/How-To-Guide/scrum-workflow
https://restfulapi.net/http-status-codes/
https://restfulapi.net/http-methods
https://about.gitlab.com/solutions/agile-delivery/
https://www.docker.com/
https://docs.docker.com/compose/
https://www.hetzner.com/
https://www.hetzner.com/managed-server/ma120
https://gitlab.com/urbanageeu
https://docs.gitlab.com/ee/user/packages/container_registry/
https://junit.org/junit5/
https://site.mockito.org/
https://karma-runner.github.io/latest/index.html
https://mochajs.org/
https://www.chaijs.com/
https://docs.python.org/3/library/unittest.html
https://pypi.org/project/nose/
https://jestjs.io/
https://jmeter.apache.org/
https://www.sonarqube.org/
https://prometheus.io/
https://grafana.com/
https://www.complianceonline.com/resources/software-verification-and-validation-requirements-for-medical-device-and-implementation-strategies.html#:~:text=Software%20validation%20is%20the%20%22confirmation,software%20can%20be%20consistently%20fulfilled.%22
https://www.complianceonline.com/resources/software-verification-and-validation-requirements-for-medical-device-and-implementation-strategies.html#:~:text=Software%20validation%20is%20the%20%22confirmation,software%20can%20be%20consistently%20fulfilled.%22
https://www.complianceonline.com/resources/software-verification-and-validation-requirements-for-medical-device-and-implementation-strategies.html#:~:text=Software%20validation%20is%20the%20%22confirmation,software%20can%20be%20consistently%20fulfilled.%22
https://www.complianceonline.com/resources/software-verification-and-validation-requirements-for-medical-device-and-implementation-strategies.html#:~:text=Software%20validation%20is%20the%20%22confirmation,software%20can%20be%20consistently%20fulfilled.%22
https://en.wikipedia.org/wiki/ISO/IEC_9126
https://www.iso.org/standard/35733.html


 

 
 

 

 

© URBANAGE GA no: 101004590 26 

 

D5.2 Initial Platform Prototype 

8 Annex 1: Technical Questionnaire 

The following questionnaire was distributed to the technical partners of the platform in order to gather 

information about the components and tools that will be used to compose the URBANAGE platform. 

 

URBANAGE Technical Questionnaire 

 
INTRODUCTION  

The following questions are requested to be filled by URBANAGE’s technology partners who are going to 

develop the components in RTD WPs and that will be integrated in the URBANAGE platform. Please provide 

your answers and you are kindly requested not to respond with a simple yes or no. Try to elaborate on your 

answers by giving an example of use, to the extent that this is possible. 

 

QUESTIONS  

1. Questions about your component 

 

1. Please name your component and provide a short description of functionality you plan to 

deliver in the project and any foreseen interrelation with another URBANAGE software 

component. 

Component Name:  

Component Description:  

 

2. Do you have an existing background tool that will be adopted in the project to support your 

component? If yes, please provide the following: 

 

 Any past project that was used: 

 The component architecture and technologies used in the development: 

 

3. Did/Will you implement your component from scratch or is it an extension of a third-party 

platform? If you have extended a third-party platform, please provide at least the following: 

 

 Name:  

 Version:  

 

4. Does your component support / require user interaction? If yes, please provide a short 

description of the expected user feedback. 

 

5. Have you ever performed a stress test on your component under heavy load? If yes, please 

provide the test results. 



 

 
 

 

 

© URBANAGE GA no: 101004590 27 

 

D5.2 Initial Platform Prototype 

 

6. Which person in your team is the designated component "owner" (for communication 

purposes)? 

 

7. If known, please state the names of people actively involved in the development of the 

component (for communication purposes). 

8. Will the component be provided as a service, binary or source code? 

 

9. What will be the license of the delivered component? 

 

10. Are there any restrictions in its use? 

 

11. Will it be made available under an open-source license? 

 

2. Development Needs 

 

1. In which programming languages does your component depend (i.e., java, C++, etc.)?  

   

Please provide at least the following: 

 

 Name:  

 Version: 

 

2. Does your component depend on existing design tools (i.e., eclipse, process modelling tool, 

etc.)? Please provide at least the following: 

 

 Name:  

 Version:  

 

3. Which are the hardware requirements for your component to run (i.e., any restrictions in 

memory use, required CPU, etc.)? 

 

4. Which are the software requirements for your component to run (i.e., operating system, 

tomcat, apache, etc.) 

 

5. Does your component have any third-party dependencies or use third party libraries? If yes, 

please provide at least the following: 

 

 Name:  

 Version:  



 

 
 

 

 

© URBANAGE GA no: 101004590 28 

 

D5.2 Initial Platform Prototype 

 

6. Can you support automatic builds? Can you support Ant or Maven? 

 

7. Does your component have any database requirements? If yes, please provide the following: 

 

 required design (i.e., SQL-like, noSQL):  

 database schema (i.e. ER diagram, JSON format): 

 

8. Is there a requirement on a specific Version Control System? 

 

9. Are you going to use a specific tool for the technical verification and evaluation of your 

component? If yes, which is the tool? 

 

3. Interoperability Requirements 

 

1. Does your component offer an API to work as a service? 

 

 If yes, please provide the full API Documentation for both input and output streams:  

 If no, please describe the communication schema supported by your component:  

 

2. Can your component support asynchronous messaging? 

 

3. Does your component need any specific data transformation schema? 

 

4. Which are the foreseen dependencies with other URBANAGE software components, if any? 

Please provide at least the following: 

 

 List of components:  

 Input and / or output requirements:  

 Type and aim of the information that need to be exchanged:  

 

4. Security principles 

 

1. Which are the security principles (i.e. Principle of Least privilege, establish secure defaults, 

etc.) that should be taken into consideration to protect your component’s data? 

 

 

 


